Math, asked by 12ahujagitansh, 1 month ago

Find the domain of the following function

f(x) =  \sqrt{ {sin}^{ - 1}  log_{2}(x) }

Don't spam​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  \sqrt{ {sin}^{ - 1} (log_{2}x) }

We know,

\boxed{\tt{ Domain \: of \:  {sin}^{ - 1}x \: is \: x \:  \in \: [ - 1,1] \: }}

So,

\rm \implies\: - 1 \leqslant  log_{2}(x) \leqslant 1

We know

\boxed{\tt{  log_{b}(a) = c \: \rm \implies\:a =  {b}^{c} \: }}

So, using this, we get

\rm \implies\: {2}^{ - 1} \leqslant x \leqslant  {2}^{1}

\rm \implies\: \dfrac{1}{2}  \leqslant x \leqslant  2 -  -  - (1)

Again,

\rm :\longmapsto\: log_{2}(x) \geqslant 0

\rm \implies\:x \geqslant  {2}^{0}

\rm \implies\:x \geqslant 1 -  -  - (2)

From equation (1) and (2), we concluded that

\rm \implies\:1 \leqslant x \leqslant 2

\rm \implies\:x \:  \in \: [1, \: 2]

Hence,

\boxed{\tt{Domain \: of \:  f(x) =  \sqrt{ {sin}^{ - 1}( log_{2}x) }  \: is \: x \in \: [1,2] \: }}

Answered by Anonymous
11

\large\underline{\sf{Solution-}}

function Are

\rm :\longmapsto\:f(x) =  \sqrt{ {sin}^{ - 1} (log_{2}x) }

Given

\boxed{\tt{ Domain \: of \:  {sin}^{ - 1}x \: is \: x \:  \in \: [ - 1,1] \: }}

Then

\rm \implies\: - 1 \leqslant  log_{2}(x) \leqslant 1

Given

\boxed{\tt{  log_{b}(a) = c \: \rm \implies\:a =  {b}^{c} \: }}

So, using this, we get

\rm \implies\: {2}^{ - 1} \leqslant x \leqslant  {2}^{1}

\rm \implies\: \dfrac{1}{2}  \leqslant x \leqslant  2 -  -  - (1)

Again,

\rm :\longmapsto\: log_{2}(x) \geqslant 0

\rm \implies\:x \geqslant  {2}^{0}

\rm \implies\:x \geqslant 1 -  -  - (2)

From equation (1) and (2),

\rm \implies\:1 \leqslant x \leqslant 2

\rm \implies\:x \:  \in \: [1, \: 2]

Answer

\boxed{\tt{Domain \: of \:  f(x) =  \sqrt{ {sin}^{ - 1}( log_{2}x) }  \: is \: x \in \: [1,2] \: }}

Similar questions