Math, asked by Anonymouse04, 10 months ago

Find the domain of the following real function:

f(x)= \frac{2x-3}{x^2-3x+2}

Answers

Answered by Anonymous
2

Given ,

The function is f(x) = \frac{2x-3}{x^2-3x+2}

We know that ,

For function to be real , we must have

Denominator ≠ 0

Thus ,

 \sf \Rightarrow {(x)}^{2}  - 3x + 2 ≠ 0 \\  \\ \sf \Rightarrow</p><p> {(x)}^{2} -1x - 2x + 2 ≠ 0 \\  \\ \sf \Rightarrow</p><p>x(x - 1) - 2(x - 1) ≠ 0 \\  \\\sf \Rightarrow </p><p>(x -2) ≠ 0 \:  \:  and  \:  \: (x- 1) ≠ 0 \\  \\ \sf \Rightarrow</p><p>x ≠2 \:  \:  and \:  x  ≠1

 \therefore \bold{ \underline{ \sf  Domain  \: of \:  f(x) = R -  \{2,1 \}}}

Similar questions