Math, asked by Blacksmith1111, 1 month ago

Find the domain of the following:cosec^-1x+cot^-1x+tan^-1x

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\: {cosec}^{ - 1}x  +  {cot}^{ - 1}x  +  {tan}^{ - 1}x

We know,

\rm :\longmapsto\: {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2}

Therefore,

\rm :\longmapsto\: {cosec}^{ - 1}x  +  {cot}^{ - 1}x  +  {tan}^{ - 1}x

\rm \:  =  \:  \: \: {cosec}^{ - 1}x + \dfrac{\pi}{2}

Now,

We know,

\rm :\longmapsto\: {cosec}^{ - 1}x \:  \in \: \bigg[ - \dfrac{\pi}{2}  ,0\bigg) \cup\bigg(0, \dfrac{\pi}{2} \bigg]

So,

\rm :\longmapsto\: \dfrac{\pi}{2}  +  {cosec}^{ - 1}x \:  \in \: \bigg[ - \dfrac{\pi}{2} +\dfrac{\pi}{2},0 + \dfrac{\pi}{2}\bigg) \cup\bigg(0 +\dfrac{\pi}{2} , \dfrac{\pi}{2} + \dfrac{\pi}{2} \bigg]

\rm :\longmapsto\: \dfrac{\pi}{2}  +  {cosec}^{ - 1}x \:  \in \: \bigg[ 0, \dfrac{\pi}{2}\bigg) \cup\bigg(\dfrac{\pi}{2} , \pi \bigg]

Hence,

★ Domain of

\rm :\longmapsto\:{cosec}^{- 1}x +  {tan}^{ - 1}x+{cot}^{-1}x\:  \in \: \bigg[ 0, \dfrac{\pi}{2}\bigg) \cup\bigg(\dfrac{\pi}{2} , \pi \bigg]

Additional information :-

\rm :\longmapsto\: {sin}^{ - 1}x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg]

\rm :\longmapsto\: {tan}^{ - 1}x \:  \in \: \bigg( - \dfrac{\pi}{2}, \: \dfrac{\pi}{2} \bigg)

\rm :\longmapsto\: {cos}^{ - 1}x = \bigg[0, \: \pi\bigg]

\rm :\longmapsto\: {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}

\rm :\longmapsto\: {sec}^{ - 1}x +  {cosec}^{ - 1}x = \dfrac{\pi}{2}

Similar questions