Math, asked by ItzMahira, 1 day ago

Find the domain of the function ​

Attachments:

Answers

Answered by mathdude500
13

Given Question

Find the domain of the function

\rm :\longmapsto\:f(x) = \dfrac{1}{ \sqrt{ |cosx|  + cosx} }

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{ \sqrt{ |cosx|  + cosx} }

Now,

\rm :\longmapsto\:f(x) \: is \: defined \: if \:  |cosx| + cosx > 0

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\  \\ &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |cosx| + cosx  = \begin{cases} &\sf{  \:  \: 0 \:  \: when \: cosx  \leqslant 0} \\  \\ &\sf{ \:  \: 2 \: cosx \:  \: when \: cosx  >  0} \end{cases}\end{gathered}\end{gathered}

So,

\rm\implies \:f(x) \: is \: defined \: when \: cosx > 0

So, from graph we concluded that cosx > 0 in the following intervals.

\begin{gathered}\boxed{\begin{array}{c|c} \bf cosx & \bf \: x \:  \in \:  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  + ve & \sf \bigg( - \dfrac{\pi}{2} ,\dfrac{\pi}{2} \bigg)  \\ \\ \sf  + ve & \sf \bigg(\dfrac{3\pi}{2} ,\dfrac{5\pi}{2} \bigg) \\ \\ \sf  + ve & \sf \bigg(\dfrac{7\pi}{2} ,\dfrac{9\pi}{2} \bigg) \end{array}} \\ \end{gathered}

So, if we generalized this we get

\rm\implies \:cosx > 0 \: when \: x \:  \in \: \bigg(\dfrac{(4n - 1)\pi}{2} ,\dfrac{(4n + 1)\pi}{2} \bigg) \:  \forall \: n \in \: Z

Hence,

Domain of the function is

\red{\rm\implies \boxed{\tt{ \: x \in \: \bigg(\dfrac{(4n - 1)\pi}{2} ,\dfrac{(4n + 1)\pi}{2} \bigg) \:  \forall \: n \in \: Z}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by Anonymous
3

 \tt \huge \colorbox{lime}{❥Solution :-}

️‍️

 \tt \red{Given}    : - \: f(x) =  \frac{1}{ \sqrt{ | \cos(x) | } +  \cos(x)  }  \\

️‍️

 \tt \red{ To \: Find} \:   :- \:  Domain \: of \: f(x) \\

️‍️

 \tt \red{Solution} \: :-f(x) =  \frac{1}{ \sqrt{ | \cos(x) | } +  \cos(x)  }  \\

  \tt \: | \cos(x) |  +  \cos(x)  > 0

 \tt \:  =  >  \cos(x)   >  0 \\

 \tt \:  =  > 2n\pi -  \frac{x}{2}  < x < 2n\pi +  \frac{\pi}{2}  \\

 \tt \:  =  > x∈( \frac{(4n - 1)\pi}{2} , \:  \frac{(4n + 1)\pi}{2} ,n∈ \: I \\

Hence, the Domain is

 \tt \pink{( \frac{(4n - 1)\pi}{2}  < x  <  \frac{(4n + 1)\pi}{2} )}

_____________________________________

Similar questions