Math, asked by thembiempandetm, 1 year ago

find the domain of the function f(x)= 3x-8/x^2-9x+20

Answers

Answered by saisagar6129
7

Answer:

Step-by-step explanation:

factorise the denominator

x^2 - 9x +20

x^2 -5x - 4x +20

x(x-5)-4(x-5)

(x-5)(x-4)

the domain is all real numbers except 4 & 5

the answer for ur question is given

hope it helps u

plssss mark me brainliest

plllllssssss follow me

Answered by charliejaguars2002
4

Answer:

\Large\boxed{X=5, X=4}

Step-by-step explanation:

Given:

\Large\boxed{\textnormal{LESSON: DOMAIN OF THE FUNCTION}}

To find the domain, first you have to use the function notation of f(x).

Solutions:

First, thing you do is take out the denominator from left to right numbers.

\displaystyle \frac{3x-8}{x^2-9x+20}

Solve.

\displaystyle x^2-9x+20=0

Try to used quadratic equation formula.

\Large\boxed{\textnormal{QUADRATIC EQUATIONS FORMULA}}

\displaystyle AX^2+BX+C=0

\displaystyle X_1, _2=\frac{-B\pm\sqrt{B^2-4AC} }{2A}

A=1

B=(-9)

C=20

\displaystyle \frac{-(-9)\pm \sqrt{(-9)^2-4*1*20}}{2*1}

Solve.

\displaystyle 9+\sqrt{(-9)^2-4*1*20}=10

\displaystyle (-9)^2=81

\displaystyle 4*1*20=80

Subtract the numbers from left to right.

\displaystyle \sqrt{81-80}

\displaystyle 81-80=1

\displaystyle \sqrt{1}=1

Add the numbers from left to right.

\displaystyle 9+1=10

\displaystyle \frac{10}{2*1}

Multiply.

\displaystyle 1*2=2

\displaystyle \frac{10}{2}

Then, divide the numbers from left to right.

\displaystyle 10\div2=\boxed{5}

\displaystyle \frac{-(-9)-\sqrt{(-9)^2-4*1*20}}{2*1}=\boxed{4}

\Large\boxed{X=5, X=4}

Therefore, the correct answer is x=5 and x=4.

Similar questions