Find the domain of the function f(x)=log((3tan^(-1)x+pi)/(pi-4tan^(-1)x)).
Answers
EXPLANATION.
Domain of the function.
⇒ f(x) = ㏒(3tan⁻¹x + π/ π - 4tan⁻¹x).
As we know that,
Equation must be > 0.
⇒ (3tan⁻¹x + π/ π - 4tan⁻¹x) > 0.
⇒ (3tan⁻¹x + π/ 4tan⁻¹x - π) < 0.
Find zeroes of the equation.
⇒ 3tan⁻¹x + π = 0.
⇒ 3tan⁻¹x = - π.
⇒ tan⁻¹x = - π/3. = -√3.
⇒ 4tan⁻¹x - π = 0.
⇒ 4tan⁻¹x = π.
⇒ tan⁻¹x = π/4. = 1.
Put this point on wavy curve method, we get.
⇒ x ∈ (-√3,1).
Domain of the function = (-√3,1).
MORE INFORMATION.
Algebra of the function.
(1) = (fog) (x) = f[g(x)].
(2) = (fof) (x) = f[f(x)].
(3) = (gog) (x) = g[g(x)].
(4) = (fg) (x) = f(x).g(x).
(5) = (f ± g) (x) = f(x) ± g(x).
(6) = (f/g) (x) = f(x)/g(x), g(x) ≠ 0.
EXPLANATION.
- Domain of the function.
⇒ f(x) = ㏒(3tan⁻¹x + π/ π - 4tan⁻¹x).
As we know that,
Equation must be > 0.
⇒ (3tan⁻¹x + π/ π - 4tan⁻¹x) > 0.
⇒ (3tan⁻¹x + π/ 4tan⁻¹x - π) < 0.
- Find zeroes of the equation.
⇒ 3tan⁻¹x + π = 0.
⇒ 3tan⁻¹x = - π.
⇒ tan⁻¹x = - π/3. = -√3.
⇒ 4tan⁻¹x - π = 0.
⇒ 4tan⁻¹x = π.
⇒ tan⁻¹x = π/4. = 1.
- Put this point on wavy curve method, we get.
⇒ x ∈ (-√3,1).
Domain of the function = (-√3,1).
MORE INFORMATION.
Algebra of the function.
(1) = (fog) (x) = f[g(x)].
(2) = (fof) (x) = f[f(x)].
(3) = (gog) (x) = g[g(x)].
(4) = (fg) (x) = f(x).g(x).
(5) = (f ± g) (x) = f(x) ± g(x).
(6) = (f/g) (x) = f(x)/g(x), g(x) ≠ 0.