Math, asked by kirtisolanki41, 5 months ago

find the domain of the function sin (2x-1)​

Attachments:

Answers

Answered by amansharma264
8

EXPLANATION.

Domain of the function

 \sf \:  \sin {}^{ - 1} (2x - 1)

The range of Sin ø is = [ -1,1].

→ Function f(x) is also lie between [ -1 , 1 ].

 - 1 \leqslant  \sf \:  \sin {}^{ - 1} (2x - 1)  \leqslant 1 \\  \\  \sf \:   - 2 \leqslant  (2x)  \leqslant 0

→ -1 ≤ { x } ≤ 0.

→ x € [ -1 , 0 ].

More information.

Function. Domain. Range.

y = sinx → All real → -1 ≤ x ≤ 1.

y = cosx → All real → -1 ≤ x ≤ 1.

y = tanx → x ≠ ( 2n + 1)π/2 → All real.

y = cotx → x ≠ nπ → All real.

y = secx → x ≠ ( 2n + 1)π/2 → x ≤ -1 , x ≥ 1.

y = cscx → x ≠ nπ → x ≤ -1 , x ≥ 1.

Similar questions