Math, asked by aryan021212, 4 days ago

Find the domain of the function

 \sqrt{ log_{0.4}( \frac{x - 1}{x + 5} ) }  \times  \frac{1}{ {x}^{2}  - 36}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm \: \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \times \dfrac{1}{ {x}^{2} - 36} \\

Let assume that

\rm \:f(x) =  \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \times \dfrac{1}{ {x}^{2} - 36} \\

Let further assume that

\rm \: f(x) = g(x) \times h(x) \\

where,

\rm \: g(x) = \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \\

and

\rm \: h(x) = \dfrac{1}{ {x}^{2} - 36} \\

So, Domain of f(x) is given by

\rm \: D_{f} \:   =  \: D_{g} \:  \cap \: D_{h} \\

Now, Consider

\rm \: h(x) = \dfrac{1}{ {x}^{2} - 36} \\

can be rewritten as

\rm \: h(x) = \dfrac{1}{ {x}^{2} -  {6}^{2} } \\

\rm \: h(x) = \dfrac{1}{(x - 6)(x + 6)} \\

\rm\implies \:D_h \:  :  \: x \:  \ne \:  \{ - 6, \: 6 \} \\

Now, Consider

\rm \: g(x) = \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \\

We know,

\boxed{\sf{  \: log_{a}(x) \: if \: 0 < a < 1 \:  \: then \: 0 < x < 1 \: }} \\

So,

\rm \: \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \: exist \:  \: when \\

\rm \: 0 < \dfrac{x - 1}{x + 5}  < 1 \\

So, it means

\rm \: \dfrac{x - 1}{x + 5} > 0 \: and \:   \dfrac{x - 1}{x + 5}  < 1 \\

\rm \: \dfrac{x - 1}{x + 5} > 0 \: and \:   \dfrac{x - 1}{x + 5} - 1  < 0 \\

\rm \: \dfrac{x - 1}{x + 5} > 0 \: and \:   \dfrac{x - 1 - x - 5}{x + 5}   < 0 \\

\rm \: \dfrac{x - 1}{x + 5} > 0 \: and \:   \dfrac{ - 6}{x + 5}   < 0 \\

\rm \: \dfrac{x - 1}{x + 5} > 0 \: and \:   \dfrac{6}{x + 5} > 0  \\

\rm \: x <  - 5 \: or \: x > 1 \:  \: and \:  \: x >  - 5 \\

\rm\implies \:x > 1 \\

\rm\implies \:D_g \:  : x \:  \in \: (1, \infty ) \\

Now,

\rm \: D_f \: =   \: D_g \:  \cap \: D_h \\

\rm \: D_f \::  \: x \:  \in \: (1, \:  \infty ) \:  \cap \:  \{ - 6, \: 6 \} \\

\rm \: D_f \::  \: x \:  \in \: (1, \:  \infty ) \:   -  \{6 \} \\

Hence,

\rm \: Domain \: of \: \sqrt{ log_{0.4}\bigg( \dfrac{x - 1}{x + 5} \bigg) } \times \dfrac{1}{ {x}^{2} - 36} \: is \: \: x \:  \in \: (1, \:  \infty ) \:   -  \{6 \} \\

Similar questions