Math, asked by khushisingh20018, 4 days ago

find the domain y = √(1 -x) (x+3)​

Answers

Answered by adityarawat28122004
0

Answer:

x = (y^2 +x^2-3) / -2

Step-by-step explanation:

y = √ (1-x) (x+3)

or, y = √ x+3 -x^2 -3x

or, y = √ -x^2 -2x +3

or, y^2 = -x^2 -2x +3

or, y^2+x^2-3 = -2x

or, x = (y^2 +x^2-3) / -2

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{(1 - x)(x + 3)}

Now, we know

Domain of a function (x) is defined as set of those values of x for which function assumes the real values.

So, by using Definition of domain,

\rm :\longmapsto\:y =  \sqrt{(1 - x)(x + 3)}  \: is \: defined \: for \: real \: values \: when

\rm :\longmapsto\:(1 - x)(x + 3) \geqslant 0

\rm :\longmapsto\: - (x - 1)(x + 3) \geqslant 0

\rm :\longmapsto\: (x - 1)(x + 3) \leqslant 0

\bf\implies \: - 3 \leqslant x \leqslant 1

OR

\bf\implies \:x \in \: [ - 3, \: 1]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

If a and b are two real numbers such that a < b, then

\boxed{\tt{ (x - a)(x - b) &lt; 0 \:  \: \rm\implies \: \:  x \in \: (a,b) \: }}

\boxed{\tt{ (x - a)(x - b)  \leqslant  0 \:  \: \rm\implies \: \:  x \in \: [a,b] \: }}

\boxed{\tt{ (x - a)(x - b)   &gt;   0 \:  \: \rm\implies \: \:  x \in \: ( -  \infty ,a) \cup (b, \infty ) \: }}

\boxed{\tt{ (x - a)(x - b) \geqslant  0 \:  \: \rm\implies \: \:  x \in \: ( -  \infty ,a] \cup [b, \infty ) \: }}

\boxed{\tt{  |x| &lt; a \:  \: \rm\implies \: - a &lt; x &lt; a \: }}

\boxed{\tt{  |x|  \leqslant  a \:  \: \rm\implies \: - a  \leqslant  x  \leqslant  a \: }}

\boxed{\tt{  |x - b|  \leqslant  a \:  \: \rm\implies \: b- a  \leqslant  x  \leqslant b +  a \: }}

\boxed{\tt{  |x - b| &lt; a \:  \: \rm\implies \: b- a &lt; x &lt; a + b \: }}

Similar questions