Find the domains of the function
√25-9x²
Answers
Answered by
0
Answer:
√25-9x²
if we remove root than
5-3x
Answered by
2
Answer :
[-5/3 , -5/3]
Solution :
Let the given function be f(x) .
Thus ,
f(x) = √(25 - 9x²)
The given function f(x) to be a real valued function , (25 - 9x²) ≥ 0
=> -(-25 + 9x²) ≥ 0
=> -(9x² - 25) ≥ 0
=> 9x² - 25 ≤ 0 [°•° If a ≥ b then -a ≤ -b]
=> (3x)² - 5² ≤ 0
=> (3x + 5)(3x - 5) ≤ 0
Here ,
Two cases arises :
1) 3x + 5 ≥ 0 and 3x - 5 ≤ 0
OR
2) 3x + 5 ≤ 0 and 3x - 5 ≥ 0
• Case1 : 3x + 5 ≥ 0 and 3x - 5 ≤ 0
=> 3x ≥ -5 and 3x ≤ 5
=> x ≥ -5/3 and x ≤ 5/3
=> -5/3 ≤ x ≤ 5/3
=> x € [-5/3 , -5/3]
OR
• Case2 : 3x + 5 ≤ 0 and 3x - 5 ≥ 0
=> 3x ≤ -5 and 3x ≥ 5
=> x ≤ -5/3 and x ≥ 5/3
=> x € ∅
Hence ,
→ Domain (f) = [-5/3 , -5/3] U ∅
→ Domain (f) = [-5/3 , -5/3]
Similar questions