Math, asked by vishalfaye25, 7 months ago

find the dy/dx if y=sec^-1 (Tanx) ​

Answers

Answered by kaushik05
7

Given:

 \star \: y =  { \sec}^{ - 1} ( \tan \: x) \\

To find :

 \star \:  \frac{dy}{dx}  \\

Solution:

 \implies \: y =  { \sec}^{ - 1} ( \tan \: x)

Differentiate w.rt. x both sides ,

 \implies \:  \frac{dy}{dx}  =  \frac{1}{ | \tan \: x| \sqrt{ { \tan}^{2} x - 1}  }  \times  \frac{d}{dx}  \tan \: x \\  \\  \implies \:  \:  \frac{dy}{dx}  =  \frac{1}{ | \tan \: x|  \sqrt{ { \tan}^{2}x - 1 } }  \times  { \sec}^{2} x \\  \\  \implies \:  \frac{dy}{dx}  =  \frac{ { \sec}^{2} x}{ | \tan \: x|  \sqrt{ { \tan}^{2}x - 1 } }

Formula:

 \star \bold{  \frac{d}{dx}  { \sec}^{ - 1} x =  \frac{1}{ |x|  \sqrt{ {x}^{2}  - 1} }}  \\   \\  \star \bold{  \frac{d}{dx}  \tan  \: x =  { \sec}^{2} x}

Answered by Anonymous
3

Given , the function is

  •  \tt y=  {sec}^{ - 1}  \{tan(x) \}

Differentiaing y wrt x , we get

 \tt \frac{dy}{dx}  =  \frac{d}{dx}  {sec}^{ - 1}  \{tan(x) \}

 \tt \frac{dy}{dx}  =  \frac{1}{tan(x) \sqrt{ {tan}^{2} (x) - 1} }  \frac{d}{dx} tan(x)

 \tt \frac{dy}{dx}  =  \frac{1}{tan(x) \sqrt{ {tan}^{2} (x) - 1} }   {sec}^{2} (x)

 \tt \frac{dy}{dx}  =  \frac{{sec}^{2} (x)}{tan(x) \sqrt{ {tan}^{2} (x) - 1} }

Remmember :

  \tt \implies \frac{d}{dx}  {sec}^{ - 1} (x) =  \frac{1}{x \sqrt{ {(x)}^{2}  - 1} }

 \tt \implies  \frac{d}{dx}  tan(x) =   {sec}^{2}(x)

Similar questions