Math, asked by Mridul02, 1 year ago

find the eccentricity,coordinates of foci,length of the latus rectum of the ellipse 4x^2+9y^2= 1

Answers

Answered by A1learner
3
eccentricity=√5/3
foci
(1/2,0)
(-1/2,0)
Attachments:
Answered by amirgraveiens
5

Eccentricity = √5/3, co-ordinates of foci = (√5/6, 0) and (-√5/6, 0) and length of the latus rectum of the ellipse = 4/9.

Step-by-step explanation:

Given:

The given equation of ellipse is 4x^2 + 9y^2 = 1

Comparing this equation with equation of ellipse in standard form,

\frac{x^{2} }{a^2} +\frac{y^2}{b^2} =1  

We get,

a^2=\frac{1}{4}a=\sqrt{\frac{1}{4} } a={\frac{1}{2} }  

and  b^2=\frac{1}{9}  ⇒ a=\sqrt{\frac{1}{9} }  ⇒ a={\frac{1}{3}}  

∴ Eccentricity  (e)

= \sqrt{1-(\frac{b}{a})^2 }

= \sqrt{1-\frac{(\frac{1}{3})^2}{(\frac{1}{2})^2 } }

= \sqrt{1-(\frac{2}{3})^2 }

= \sqrt{1-\frac{4}{9} }

= \sqrt{\frac{9-4}{9} }

= \sqrt{\frac{5}{9} }

= \frac{\sqrt{5} }{3}

Coordinates of foci are (ae, 0) and (– ae, 0)

= (\frac{1}{2}\times\frac{\sqrt{5} }{3}, 0) and (-\frac{1}{2}\times\frac{\sqrt{5} }{3}, 0)

= (\frac{\sqrt{5} }{6}, 0 ) and (-\frac{\sqrt{5} }{6}, 0 )

And length of of latus rectum

= \frac{2b^2}{a}

= (\frac{2\times(\frac{1}{3})^2 }{\frac{1}{2} } )

= 2\times2\times\frac{1}{3}\times \frac{1}{3}

= \frac{4}{9}

Similar questions