Math, asked by vip12, 1 year ago

find the eccentricity foci equation of directrix of the hyperbola 7x²-8y²=11

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\sqrt{\frac{15}{8}}}}}

\green{\tt{\therefore{Foci=\pm(\sqrt{\frac{15}{8}}\times \sqrt{\frac{11}{7}},0)}}}

\green{\tt{\therefore{Eqn\:of\:directrix=x\pm\sqrt{\frac{88}{105}}=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Eqn\:of\:hyperbola = 7x^{2}-8y^{2}=11} \\  \\ \red{ \underline \bold{To \: Find : }}\\ \tt{ : \implies Eccentricity(e) = ?} \\ \\ \tt{ : \implies Foci = ?}\\\\ \tt{:\implies Eqn\:of\:directrix=?}

• According to given question :

 \tt{ :  \implies  {7 x }^{2}  -  {8y}^{2}  = 11} \\  \\   \tt{:  \implies  \frac{ {x}^{2} }{ \frac{11}{7} }  -  \frac{ {y}^{2} }{ \frac{11}{8} }  = 1} \\  \\ \text{so \: it \: is \: in \: the \: form \: of   }\\ \tt{  \to \:  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \circ \:   \tt{{a}^{2}  =  \frac{11}{7} } \\  \\  \circ \:  \tt{ {b}^{2}  =  \frac{11}{8} } \\  \\  \bold{as \: we \: know \: that } \\    \tt{: \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\   \\   \tt{\implies  \frac{11}{8}  =  \frac{11}{7} ( {e}^{2}  - 1)} \\  \\  \tt{  : \implies  \frac{7}{8}  =  {e}^{2}  - 1} \\  \\   \tt  {: \implies  {e}^{2}  =  \frac{7}{8}  + 1} \\  \\    \green{\tt{:  \implies e =   \sqrt{ \frac{15}{8} }  }} \\  \\  \bold{As \: we \: know \: that} \\  \tt{ : \implies foci = ( \pm ae,0)} \\  \\   \green{\tt{ :  \implies foci  = (  \pm\sqrt{ \frac{11}{7} }   \times  \sqrt{\frac{15}{8}} ,0})} \\  \\  \bold{As \: we \: know \: that}  \\  \tt{: \implies eqn \: of \: directrix  = x = \pm\frac{a}{e}} \\  \\   \tt{ : \implies x =   \pm\sqrt{\frac{ \frac{11}{7} }{\frac{15}{8}} }} \\  \\  \green{ \tt {:  \implies x \pm  \sqrt{ \frac{88}{105} }  = 0}}

Similar questions