Math, asked by harikrishnar006, 7 months ago

find the edge of the cube whose volume is 1728 cm^3

Answers

Answered by hashirr
5

Answer:

12

Step-by-step explanation:

edge = a

volume = a³

1728 = a³

a³=1728

a=³√1728

a=12cm

Answered by Asterinn
16

Given :

  • volume of cube = 1728 cm³

To find :

  • the edge of cube

Formula used :

V =  {a}^{3}

where :-

  • V = volume of cube

  • a = the edge of cube or length of each side of cube

Solution :

Volume of cube = 1728 cm³

Now , According to the question :-

 \implies 1728=  {a}^{3}

or

 \implies {a}^{3}  = 1728

 \implies a  =  {(1728)}^{ \frac{1}{3} }

 \implies a  =   \sqrt[3]{1728}

\implies \: a= \sqrt[3]{2 \times 2 \times 2 \times 6 \times 6 \times 6}

\implies \: a= \sqrt[3]{ {2}^{3} \times  {6}^{3}  }

\implies \: a=  \sqrt[3]{{2}^{3}} \times   \sqrt[3]{{6}^{3} }

\implies \: a=  2 \times 6

\implies \: a=  12cm

Answer :

length of each side of cube = 12 cm

_______________________

\large\bf\red{Additional-Information}

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = (4/3)πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

_____________________

Similar questions