Math, asked by rahulbhuriya579, 3 months ago

find the eigen values of the matrix 4 1 1 4​

Answers

Answered by udaynayakleo
0

Answer:

the eigen values of the matrix 4 1 1 4

-4114

-4411

-1144

Answered by pulakmath007
3

The eigen values of the matrix are 3 & 5

Given :

The matrix

\displaystyle\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}

To find :

The eigen values of the matrix

Solution :

Step 1 of 3 :

Write down the matrix

The given matrix is

\displaystyle\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}

Step 2 of 3 :

Find the characteristic equation

The characteristic equation is given by

\displaystyle\begin{vmatrix} 4  -  \lambda & 1 \\ 1 & 4  -  \lambda \end{vmatrix}  = 0

\displaystyle \sf{ \implies  {(4  -  \lambda)}^{2}  - 1 = 0}

\displaystyle \sf{ \implies  {\lambda}^{2}  - 8\lambda + 16 - 1 = 0}

\displaystyle \sf{ \implies  {\lambda}^{2}  - 8\lambda + 15 = 0}

\displaystyle \sf{ \implies  {\lambda}^{2}  - 8\lambda + 15 = 0}

Step 3 of 3 :

Find eigen values of the matrix

\displaystyle \sf{   {\lambda}^{2}  - 8\lambda + 15 = 0}

\displaystyle \sf{ \implies  {\lambda}^{2}  - (5 + 3)\lambda + 15 = 0}

\displaystyle \sf{ \implies  {\lambda}^{2}  - 5\lambda  - 3\lambda + 15 = 0}

\displaystyle \sf{ \implies\lambda( \lambda - 5) - 3(\lambda - 5)= 0}

\displaystyle \sf{ \implies( \lambda - 3) (\lambda - 5)= 0}

\displaystyle \sf{ \implies \lambda  = 3 \: , \: 5}

The eigen values of the matrix are 3 & 5

Similar questions