Math, asked by iamnotanagha9503, 1 day ago

find the eigenvalues and eigen vectors of the symmetric matrix : a= [1 1 3/1 5 1/ 3 1 1]

Answers

Answered by ksantosh2010gmailcom
0

Step-by-step explanation:

(1) \begin{bmatrix} 9 & 3 \\ 2 & 9 \end{bmatrix}[

9

2

3

9

]

Start from forming a new matrix by subtracting λ

from the diagonal entries of the given matrix:

\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right][

9−λ

2

3

9−λ

]

The determinant of the obtained matrix is \lambda^{2} - 18 \lambda + 75λ

2

−18λ+75

Solve the equation

The roots are comes to be \lambda_{1} = 9 - \sqrt{6}λ

1

=9−

6

, \lambda_{2} = \sqrt{6} + 9λ

2

=

6

+9

These are the eigenvalues.

Next, find the eigenvectors.

a. \lambda = 9 - \sqrt{6}λ=9−

6

\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right] = \left[\begin{array}{cc}\sqrt{6} & 3\\2 & \sqrt{6}\end{array}\right][

9−λ

2

3

9−λ

]=[

6

2

3

6

]

The null space of this matrix is\left\{\left[\begin{array}{c}- \frac{\sqrt{6}}{2}\\1\end{array}\right]\right\}{[

2

6

1

]}

This is the eigenvector.

b. \lambda = \sqrt{6} + 9λ=

6

+9

\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right] = \left[\begin{array}{cc}- \sqrt{6} & 3\\2 & - \sqrt{6}\end{array}\right][

9−λ

2

3

9−λ

]=[

6

2

3

6

]

The null space of this matrix is \left\{\left[\begin{array}{c}\frac{\sqrt{6}}{2}\\1\end{array}\right]\right\}{[

2

6

1

]}

This is the eigenvector.

(2)

\begin{bmatrix} 2 & 0 & 1 \\ 0& 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}

2

0

1

0

2

0

1

0

2

as above done we well proceed the same

Start from forming a new matrix by subtracting λ

λ from the diagonal entries of the given matrix:

\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right].

2−λ

0

1

0

2−λ

0

1

0

2−λ

.

The determinant of the obtained matrix is

- \lambda^{3} + 6 \lambda^{2} - 11 \lambda + 6−λ

3

+6λ

2

−11λ+6

Solve the equation \lambda_{1} = 3λ

1

=3 , \lambda_{2} = 2λ

2

=2 , \lambda_{3} = 1λ

3

=1

These are the eigenvalues.

Next, find the eigenvectors.

a. \lambda = 3λ=3

\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}-1 & 0 & 1\\0 & -1 & 0\\1 & 0 & -1\end{array}\right]

2−λ

0

1

0

2−λ

0

1

0

2−λ

=

−1

0

1

0

−1

0

1

0

−1

The null space of this matrix is \left\{\left[\begin{array}{c}1\\0\\1\end{array}\right]\right\}

1

0

1

This is the eigenvector.

b. \lambda = 2λ=2

\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0\end{array}\right]

2−λ

0

1

0

2−λ

0

1

0

2−λ

=

0

0

1

0

0

0

1

0

0

The null space of this matrix is\left\{\left[\begin{array}{c}0\\1\\0\end{array}\right]\right\}

0

1

0

This is the eigenvector.

c. \lambda = 1λ=1

\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}1 & 0 & 1\\0 & 1 & 0\\1 & 0 & 1\end{array}\right]

2−λ

0

1

0

2−λ

0

1

0

2−λ

=

1

0

1

0

1

0

1

0

1

The null space of this matrix is\left\{\left[\begin{array}{c}-1\\0\\1\end{array}\right]\right\}

−1

0

1

This is the eigenvector.

mark me as branlist answer

Similar questions