find the electrostatic force of attraction between proton and electron in hydrogen atom
Answers
Answered by
2
The force of electrostatic attraction is given by,
![\frac{1}{4\pi \: e_{0} } \frac{ q_{1} \: q_{2} }{ {r}^{2} } \\ \frac{1}{4\pi \: e_{0} } \frac{ q_{1} \: q_{2} }{ {r}^{2} } \\](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B4%5Cpi+%5C%3A++e_%7B0%7D+%7D++%5Cfrac%7B+q_%7B1%7D++%5C%3A+q_%7B2%7D++%7D%7B+%7Br%7D%5E%7B2%7D+%7D++%5C%5C+)
Where symbols hold their usual meaning,
To find r we must use the radius relation for 1st orbit,
![0.529{(1)}^{2} angstrom \\ \\ = 0.529 \: angstrom \\ \\ \\ = 5.29 \times {10}^{ - 11} m 0.529{(1)}^{2} angstrom \\ \\ = 0.529 \: angstrom \\ \\ \\ = 5.29 \times {10}^{ - 11} m](https://tex.z-dn.net/?f=0.529%7B%281%29%7D%5E%7B2%7D+angstrom+%5C%5C+%5C%5C+++%3D+0.529+%5C%3A+angstrom+%5C%5C++%5C%5C++%5C%5C++%3D+5.29+%5Ctimes++%7B10%7D%5E%7B+-+11%7D+m)
Using this value,
we have,
![- 9 \times {10}^{9} \times \frac{1.6 \times {10}^{ - 19} \times 1.6 \times {10}^{ - 19} }{ {(5.29 \times {10}^{ - 11} )}^{2} } N \\ = - 9 \times \frac{ {(1.6)}^{2} }{ {(52.9)}^{2} } \times {10}^{9 + ( - 38) + 22} \times N \\ = 0.823 \times {10}^{ - 7} \times N\\ \\ = 8.23 \times {10}^{ - 8} N \\ - 9 \times {10}^{9} \times \frac{1.6 \times {10}^{ - 19} \times 1.6 \times {10}^{ - 19} }{ {(5.29 \times {10}^{ - 11} )}^{2} } N \\ = - 9 \times \frac{ {(1.6)}^{2} }{ {(52.9)}^{2} } \times {10}^{9 + ( - 38) + 22} \times N \\ = 0.823 \times {10}^{ - 7} \times N\\ \\ = 8.23 \times {10}^{ - 8} N \\](https://tex.z-dn.net/?f=+-+9+%5Ctimes++%7B10%7D%5E%7B9%7D++%5Ctimes+%5Cfrac%7B1.6+%5Ctimes++%7B10%7D%5E%7B+-+19%7D++%5Ctimes+1.6+%5Ctimes++%7B10%7D%5E%7B+-+19%7D+%7D%7B+%7B%285.29+%5Ctimes++%7B10%7D%5E%7B+-+11%7D+%29%7D%5E%7B2%7D+%7D+N+%5C%5C++%3D++-+9+%5Ctimes++%5Cfrac%7B+%7B%281.6%29%7D%5E%7B2%7D+%7D%7B+%7B%2852.9%29%7D%5E%7B2%7D+%7D+%5Ctimes++%7B10%7D%5E%7B9+%2B+%28+-+38%29+%2B+22%7D+++%5Ctimes+N+%5C%5C++++%3D+0.823+%5Ctimes++%7B10%7D%5E%7B+-+7%7D+%5Ctimes++N%5C%5C++%5C%5C++%3D+8.23+%5Ctimes++%7B10%7D%5E%7B+-+8%7D+N+%5C%5C+)
Where symbols hold their usual meaning,
To find r we must use the radius relation for 1st orbit,
Using this value,
we have,
Similar questions