Physics, asked by Anonymous, 5 months ago

find the energy possessed by an object of mass 10 kg when it is at a height of 6 cm above the ground .​

Answers

Answered by BrainlyConqueror0901
48

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Energy\:possessed=6\:J}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt: \implies Mass \: of \: body (m)= 10 \: kg \\  \\ \tt: \implies Height(h) = 6 \: cm \\  \\ \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies Energy \: possessed =?

• According to given question :

 \green{ \star } \tt \: Height =  \frac{6}{100} = 0.06 \: m \\  \\  \green{\star } \tt \: g = 10 \:  {m/s}^{2}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Kinetic \: Energy =  \frac{1}{2} m {v}^{2}  \\  \\ \tt:  \implies Kinetic \: Energy = \frac{1}{2}  \times 10 \times  {0}^{2}  \\  \\  \tt:  \implies Kinetic \: Energy =0 \: J-  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies Potential\: Energy =mgh \\  \\ \tt:  \implies Potential\: Energy =10 \times 10 \times 0.06 \\  \\ \tt:  \implies Potential\: Energy =6 \: J -  -  -  -  - (1) \\  \\  \text{Adding \: (1) \: and \: (2)} \\   \\ \tt:   \implies Energy \: possessed = K.E + P.E \\  \\ \tt:   \implies Energy \: possessed =0 + 6 \\  \\  \green{\tt:   \implies Energy \: possessed =6 \: J}

Answered by itzcutiemisty
55

Answer:

6 J

Explanation:

\underline{\bigstar\:\textsf{Given:}}

  • Mass of object (m) = 10 kg
  • Height (h) = 6 cm = 0.06 m

\underline{\bigstar\:\textsf{To\:find:}}

  • Energy possessed by that object (E) = ?

\underline{\bigstar\:\textsf{Given:}}

Let's take analysis of the situation first !

There is an object whose mass is 10 kg and it is at a height of 0.06 m. We have to calculate the energy possessed by that object.

Let's find now !

We know, an object has both kinetic and potential energies or mechanical energy.

(Mechanical energy = P.E + K.E)

▪︎ We remember, \blue\:\sf{K.E\:=\:\dfrac{1mv^2}{2}}

(here, v = 0)

\implies\:\sf{K.E\:=\:\dfrac{1\:×\:10\:×\:0^2}{2}}

\implies K.E = 5 × 0

So, K.E = 0 Joules

▪︎We also remembers, Potential energy (P.E) = mgh

(g = 9.8 m/s²)

\implies P.E = 10 × 9.8 × 0.06

\implies P.E = 98 × 0.06

\implies P.E = 5.88 J

Thus, P.E = 5.88 Joules.

Now, total energy possessed = P.E + K.E

\longrightarrow 5.88 + 0

{\large{\boxed{\sf{\therefore \:Energy\:possessed\:is\:5.88\:J}}}}

(If we will take g as 10 then energy possessed will be 6 J)

Hope it helped you dear...

Similar questions