Math, asked by Harshikarnavat8431, 1 year ago

Find the eqn of the hyperbola where foci are (0,+_12)and length of latus rectum is 36

Answers

Answered by sonal76
2

there are two equations

hope this answer will help

Attachments:
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=x^{2}+3y^{2}=-108}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (0,\pm12)} \\  \\   \tt{ : \implies Length\:of\:latus\:rectum = 36} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   -\frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\\bold{As\:we\:know\:that}\\ \tt{:\implies foci=\sqrt{(12-(-12))^{2}+(0-0)^{2}}}\\\\ \tt{:\implies 2be=24}\\\\  \tt{: \implies be = 12}

 \text{Both \: side \: squaring} \\   \tt{: \implies  {b}^{2}  {e}^{2}  = 144}  -  -  -  -  - (2) \\ \\ \bold{As\:we\:know\:that} \\ \tt{:  \implies Length \: of \: latus \: rectum =  36 }\\  \\  \tt{: \implies  \frac{2  {a}^{2}  }{b} = 36} \\  \\   \tt{: \implies   {a}^{2}  = 18b -  -  -  -  -  (3)} \\  \\ \bold{As \: we \: know \: that}  \\  \tt{: \implies  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1)} \\  \\  \tt{:  \implies  {a}^{2}  =  {b}^{2}  {e}^{2}  -  {b}^{2} } \\  \\   \tt{:  \implies  {a}^{2} +  {b}^{2}   =  {b}^{2}  {e}^{2} } -----(4)\\  \\  \text{Putting \: values \: of \: (1) \: and \: (2) \: in \: (4)} \\  \tt{:  \implies 18b+  {b}^{2}  = 144} \\  \\  \tt{: \implies {b}^{2}  + 18b - 144= 0} \\  \\  \tt{:  \implies(b-6)(b  + 24) = 0} \\  \\   \tt{: \implies b = 6 \:and \:  - 24} \\  \\   \tt{:  \implies b = 6} \:  \:  \: (Value \: of \: b \: not \: be \: negative) \\  \\   \bold{Putting \: value \: of \: b\: in \: (3)} \\  \tt{:  \implies  {a}^{2}  = 18\times 6 } \\    \\   \green{\tt{ : \implies   {a}^{2}  = 108}}\\ \\  \text{Putting \: value \: of \: a \: and \: b \: in \: (1)} \\ \tt{:\implies \frac{x^{2}}{108}+\frac{y^{2}}{36}=-1 }\\ \\    \green{\tt{\therefore Eqn \: of \:hyperbola \: is \:  {x}^{2}  +  3{y}^{2}  = -108}}

Similar questions