Math, asked by arman45621, 10 months ago

Find the equation of a circle passing point (5,-8) ,(2,-9) and (2,1)

Answers

Answered by Anonymous
2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

The general Equation of a circle is given by

 \implies  \boxed{ x {}^{2}  + y {}^{2}  + 2gx + 2fy + c = 0}

Now the points (5,-8) ,(2,-9) and (2,1)are on the circle .....

Satisfying point (5,-8)

 \implies (5) {}^{2}   +  ( - 8) {}^{2} + 2g(5) + 2f( - 8)  + c = 0 \\  \implies  10g - 16f + c =  - 89 \:</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>(</strong><strong>i)</strong><strong>

Satisfying point (2,-9)

 =  &gt; 2 {}^{2}  + ( - 9) {}^{2}  + 2g(2) + 2f( - 9) + c = 0 \\  =  &gt; 4g  - 18f + c =  - 13</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>(</strong><strong>ii</strong><strong>)</strong><strong>

Satisfying point (2,1)

 =  &gt; 2 {}^{2}  + 1 {}^{2}  + 2g(2) + 2f(1) + c = 0 \\  =  &gt; 4g + 2f  + c  =  - 5</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>(</strong><strong>iii</strong><strong>)</strong><strong>

Solving of g,f and c

from (i)&(ii)

10g - 16f + c = - 89

4g - 18f + c = - 13

____________________

@6g+2f= -76

=>3g+f= -38........(iv)

from (i)

10g - 16f + c = - 89

=>c=16f-10g-89

putting this in (iii)...

4g+2f+16f-10g-89=-5

=>-8g+18f=84

=>-4g+9f=42.........(v)

from equation (iv)&(v)

doing [(i)×9-(ii)×1], we get

=>27g+9f+4g-9f=-38-42

=>36g=-80

=>g=-80/36=-20/9

therefore...

f=42+4(-20/9)=42-(80/9)=298/9

and

c=-5-4(-20/9)-2(298/9)=-157/3

putting the values of g,f and c in the general form

=>x²+y²+2(-20/9)x+2(298/9)y+(-157/3)=0

\implies\boxed{\red{9x{}^{2}+9y{}^{2}-40x+596y-471=0}}

______________________________________________

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Similar questions