Find the equation of a circle with
(i) centre at origin and radius 4.
(ii) centre at (3,-2)and radius 5.
(iii) centre at (-3, -2) and radius 6.
(iv) centre at (a, b) and radius .
(v) centre at (a cos α, b sin α) and radius 'a'.
Answers
centre 0,0
and radius 4
so eq= x^2+y^2=16
2 centre (3,-2)
eq= (x-3)^2+(y+2)^2=25
3 same as above
4. "
5 (x-acosa)^2+(y-bsina)^2=a^2
Answer:
Step-by-step explanation:
Equation of circle
( x -a)² + (y -b)² = r²
a & b are center point of circle & r = radius
(i) centre at origin and radius 4.
x² + y² = 4²
=> x² + y² = 16
(ii) centre at (3,-2)and radius 5.
(x-3)² + (y+2)² = 5²
=> x² + 9 - 6x + y² + 4 + 4y = 25
=> x² + y² - 6x + 4y - 12 = 0
(iii) centre at (-3,-2)and radius 6.
(x+3)² + (y+2)² = 5²
=> x² + 9 + 6x + y² + 4 + 4y = 36
=> x² + y² + 6x + 4y - 23 = 0
(iv) centre at (a, b) and radius√a² + b²
(x -a)² + (y-b)² = (√a² + b²)²
=> x² + a² - 2ax + y² + b² - 2by = a² + b²
=> x² + y² - 2ax - 2ay = 0
(v) centre at (a cos α, b sin α) and radius 'a'.
(x -acosα)² + (y-bSinα)² = a²
=> x² + a²Cos²α - 2axCosα + y² + b²Sin²α - 2bySinα = a²
=> x² + y² - a²Sin²α + b²Sin²α - 2axCosα - 2bySinα = 0
=> x² + y² +(b² - a²)Sin²α - 2axCosα - 2bySinα = 0