Math, asked by razlan6481, 1 year ago

Find the equation of a curve whose tangent at any point on it, different from origin,has slope y+y/x

Answers

Answered by MaheswariS
0

\text{ I have applied variable separable method to find the equation of the curve}

\textbf{Given:}

\text{Slope of tangent at any point on the curve }=y+\frac{y}{x}

\implies\frac{dy}{dx}=y+\frac{y}{x}

\frac{dy}{dx}=y(1+\frac{1}{x})

\frac{dy}{y}=(1+\frac{1}{x})\;dx

\text{Integrating on both sides}

\int\frac{dy}{y}=\int(1+\frac{1}{x})\;dx

\int\frac{dy}{y}=\int{1}\;dx+\int\frac{1}{x})\;dx

logy=x+logx+c

logy-logx=x+c

log\frac{y}{x}=x+c

\frac{y}{x}=e^{x+c}

\frac{y}{x}=ke^{x}

\implies\boxed{\bf\;y=k\;xe^{x}}

\text{which is the equation of the required curve}

Find more:

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355#

Similar questions