Math, asked by shifachippu, 4 months ago

find the equation of a line parallel to the line 3x-4y+2=0 and passing through the point (-2,3)​

Answers

Answered by belaloafify
3

Answer:

y=-\frac{3}{4} x+\frac{3}{2}

Step-by-step explanation:

if a line is parallel to a line they both have the same gradient

...

Start by finding the gradient of: 3x+4y+2=0

.....

3x+4y+2=0\\\\\\(3x+4y+2)-2=(0)-2\\\\\\3x+4y=-2\\\\\\(3x+4y)-3x=(-2)-3x\\\\\\4y=-2-3x\\\\\\\\\frac{(4y)}{4} =\frac{(-2-3x)}{4} \\\\\\y=\frac{-2-3x}{4} \\\\\\y=\frac{-2}{4} - \frac{3x}{4\\}\\\\\\y=-\frac{1}{2} -\frac{3}{4}x \\\\\\y=-\frac{3}{4}x -\frac{1}{2}

....

so -\frac{3}{4} is the gradient m

y=mx+c

y=-3x+c

...

c is the y intercept

...

if y=mx+c,

  c=y-mx

...

(-2,3) are coordinates where (-2) is x and (3) is y

..

substitute:

c=y-mx\\c=3-(-\frac{3}{4} *-2  )\\c=3-(\frac{3}{2} )\\c=\frac{3}{2}

...

The equation of a line is ( y = mx+c )

...

substitute:

y=mx+c\\\\y=-\frac{3}{4} x+\frac{3}{2}

...

Hope it helped..

Similar questions