Math, asked by mayankgupta2817, 10 months ago

find the equation of a line whose gradient is 7/3 and which passes through the point (6,0)​

Answers

Answered by MissWolverine
1

The equation is

y = 7/3 (x-6)

3y = 7x - 42

Answered by Yugant1913
11

Answer:

\huge\sf\mathbb\color{yellow} \underline{\colorbox{black}{☠answer☠}}

Step-by-step explanation:

Let equation of the straight line is Y = mx + c. According to problem,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: m =  \frac{7}{3}

∴ Equation of the straight line

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =   \frac{7}{x}  + c \\

⇒ \:  \:  \:  \:  \:  \:  \:  \: 3y = 7x + 3c

The line passes through point (6, 0) so it coordinates will satisfy the straight line.

∴ \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 3 \times 0 = 7 \times 6 + 3c

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 = 42 + 3c

⇒ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3c =  - 42

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   c = -   \frac{42}{3}  =  - 14 \\

Hence, equation of the required straight line is,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3y = 7x + 3( - 14)

⇒ \:  \:  \: 7x - 3y - 42 = 0.

Similar questions