Math, asked by massmadhum225, 5 months ago

Find the equation of a locus of a point which form a triangle of area is 2 with the points A(1,1)andB(-2,3)

Answers

Answered by shanshareef
3

Step-by-step explanation:

above images are the answer

Attachments:
Answered by Anonymous
166

Answer:

 \sf \: Hence,  \: equations \:  of  \: locus  \: of  \: point \:  are \:  2x + 3y + 9 = 0 </p><p> \sf  \\and \:  2x + 3y + 1 = 0

Step-by-step explanation:

Let P = (x y) is the locus of point which forms a triangle of area 2 sq unit with points A (1,1) and B(-2,3).

We know, area of triangle formed by points

 \sf(  \:^{}x_{1}, \:^{}y_{1}),( \:^{}x_{2},  \:^{}y_{2}) and ( \:^{}x_{3}, \:^{}y_{3}).  \\  \sf \: Then,  \:  \: area  \:  \: of  \:  \: triangle  \:  \: = \\  \sf \implies  \frac{1}{2} [ \:^{}x_{1}( \:^{}y_{2} -  \:^{}y_{3}) +  \:^{}x_{2}( \:^{}y_{3} -  \:^{}y_{1})

 \sf(  \:^{}x_{1}, \:^{}y_{1}),( \:^{}x_{2},  \:^{}y_{2}) and ( \:^{}x_{3}, \:^{}y_{3}).  \\  \sf \: Then,  \:  \: area  \:  \: of  \:  \: triangle  \:  \: = \\  \sf \implies  \frac{1}{2} [ \:^{}x_{1}( \:^{}y_{2} -  \:^{}y_{3}) +  \:^{}x_{2}( \:^{}y_{3} -  \:^{}y_{1})+  \:^{}x_{3}( \:^{}y_{1} -  \:^{}y_{2})]

 \sf \: So,  \:  \: area  \:  \: of  \: triangle \:  Formed \:  by  \: P(x,y), A(1,1) and B \: (-2,3)

 \sf2 = 1/2  x(1 - 3) + 1(3 - y) -2(y - 1)|

 \sf4 = |-2x + 3 - y -2y + 21|

 \sf \bold {breaking \:  mod}</p><p>

 \sf+4 = (-2x -3y+ 5)

 \sf 4 = |-2x -3y + 51 \\  \\ </p><p> \sf-2x - 3y + 5 = +4

 \implies \sf-2x - 3y = 5 + 4

 \sf \: Hence,  \: equations \:  of  \: locus  \: of  \: point \:  are \:  2x + 3y + 9 = 0 \\ </p><p> \sf \: and \:  2x + 3y + 1 = 0

Similar questions