find the equation of a straight line
Passing through the point of intersection
of lines, 5x-2y + 23 = 0 and 7x+6y-71=0 is perpendiculas to the
line Joining the points (5,1), (-2,2)
Answers
Answered by
0
Step-by-step explanation:
let the required line be y=mx+c
its perpendicular to 4x−2y=3
Slope of 4x−2y=3 ⇒ 4x−2y=3⇒ m
1= 2
4
=2
m
1
×m=−1
2×m=−1
m=−
2
1
x+c
∴ y=−
2
1
x+c
Passes through intersection of 5x−8y+23=0 and 7x+6y−71=0
3(5x−8y+23)=0⇒ 15x−24y+69=0
64(7x+6y−71)=0 ⇒ 28x+24y−284=0
---------------------------------------------------------------------------------------
43x=284−69
43x=215
x=
43
215
x=5
5(5)−8y+23=0
8y=48⇒y=6
meeting point P=(5,6)
P passes through y=mx+c
⇒ 6=
2
1
(5)+c
c=6+
2
5
=
2
17
∴ y=−
2
x
+
2
17
⇒ 2y+x−17=0
Equation of the line is 2y+x−17=0
Similar questions