Math, asked by kunwardurgesh3635, 4 months ago

Find the equation of a straight line passing through the point (-1,2) and making an angle of 45 degree with the line x-y+1=0.

Answers

Answered by amansharma264
26

EXPLANATION.

Equation of line passing through the point

(-1,2).

Makes an angle of 45°.

Equation of line = x - y + 1 = 0.

Slope of the line = -a/b = -1/-1 = 1.

Angle between the lines.

 \sf  \implies \:   | \dfrac{ m_{1} -  m_{2}  }{1 +  m_{1}m_{2}  } |  =  \tan( \theta)  \\  \\ \sf  \implies \: | \frac{ m_{1} - 1 }{1 +  m_{1}(1) } |  =  \tan(45 \degree)  \\  \\ \sf  \implies \: | \frac{ m_{1} - 1 }{1 +  m_{1} } |  = 1 \\  \\ \sf  \implies \: \frac{ m_{1} - 1 }{1 +  m_{1} }  = 1

\sf  \implies \: m_{1} - 1 = 1 +  m_{1} \\  \\ \sf  \implies \: m_{1} -  m_{1} \:  = 1 + 1 \\  \\   \sf  \implies \:0

\sf  \implies \: - ( \dfrac{ m_{1} - 1 }{1 +  m_{1}})  = 1 \\  \\ \sf  \implies \: -  m_{1} + 1 = 1 +  m_1 \\  \\ \sf  \implies \: \: 2 m_{1} = 0 \\  \\  \sf  \implies \: m_{1} = 0

\sf  \implies \:equation \: of \: line \\  \\ \sf  \implies \:(y -  y_{1}) = m(x -  x_{1}) \\  \\  \sf  \implies \:(y - 2) = 0(x + 1) \\  \\  \sf  \implies \:y = 2

Similar questions