Math, asked by Yashraj4191, 15 hours ago

Find the equation of all lines having slope 2 and being tangent to the curve y+2/x-3=0

Answers

Answered by prabhasaragada
0

Answer:

the answer is -2

Step-by-step explanation:

y+2/×-3=0

y+2=0

y=0-2

y=2

Hope it is useful.... Thanks

Answered by Starrex
10

Giνєи —

Equation of curve \sf{=y+\dfrac{2}{x-3}=0}

Slope of lines = 2

Tσ Fiиd —

The equation of all lines being tangent to the given curve .

Sσℓυтiσи –

\qquad\rm{=y+\dfrac{2}{x-3}=0}

Differentiating both sides w.r.t x

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}+\dfrac{d}{dx}\left(\dfrac{2}{x-3}\right)=0}

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}=-\dfrac{d}{dx}\left(\dfrac{2}{x-3}\right)}

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}=-2\dfrac{d}{dx}(x-3)^{-1}}

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}=-2\times -(x-3)^{-1-1}}

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}=2(x-3)^{-2}}

\qquad\rm{ \longrightarrow \dfrac{dy}{dx}=\dfrac{2}{(x-3)^{2}}}

\qquad\rm{ \longrightarrow \dfrac{\cancel{2}}{(x-3)^2}=\cancel{2}\:\:\:\:\:\:\:\:\:\:\big\lgroup Given \:slope : \dfrac{dy}{dx}=2\big\rgroup}

\qquad\rm{ \longrightarrow \dfrac{1}{(x-3)^2}=1}

\qquad\rm{ \longrightarrow (x-3)^2 = 1}

\qquad\rm{ \longrightarrow x-3 = ±1}

\qquad \boxed{\begin {array}{c |c}\sf x - 3 = 1 &\sf x - 3 =  - 1 \\\\\sf x = 1 + 3&\sf x =  - 1 + 3 \\\\ \sf x = 4&\sf x = 2 \end{array}}

So , x = 4 and x = 2

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

➨ Finding value of y

 \begin {array}{c |c}  \underline{\large\bf{If \: x = 2}}&  \underline{\large\bf{If \: x = 4}} \\\\  \sf y =  \dfrac{ - 2}{x - 3} & \sf \:  \: y =  \dfrac{ - 2}{x - 3 } \\ \\ \sf y =  \dfrac{ - 2}{2 - 3}& \sf \: y =  \dfrac{ - 2}{4 - 3}   \\\\  \sf \: y =  \cancel{  \dfrac{ - 2}{ - 1}} & \sf \: y =  \dfrac{ - 2}{1}  \\\\  \sf \: y = 2& \sf \: y =  - 2 \\\\ \rm Thus \: point \: is \: (2,2)& \rm \: Thus \: point \: is \: (4,-2) \end{array}

Thus ,there are 2 tangents to the curve with slope 2 and passing through points ( 2,2 ) and ( 4,-2 )

✰ We know that :

Equation of line at \sf{x_{1} ,y_{1}} and having slope m is :

\qquad\underline{\boxed{\large\rm\purple{ \leadsto y-y_{1}=m(x-x_{1}) }}}

 \boxed{\begin{array}{c |c}\underline{\bf{equation \: of \: tangent \: through \: (2,2)}}&\underline{\bf{equation \: of \: tangent \: through \: (4, - 2)}}\\\\ \\ \sf y - 2 = 2(x - 2)&\sf y - ( - 2) = 2(x - 8) \\\\\\\bold{  y - 2x + 2 = 0} &\bold{ y - 2x + 10 = 0}\end {array}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\red{\dag} Note : slide to view full answer or view the answer in browser !

Similar questions