Math, asked by changajaan91, 3 months ago

find the equation of ap circle passing through point 2,3 whose centre is h,k and radius is 4cm?​

Answers

Answered by amansharma264
5

EXPLANATION.

Equation of circle passing through the point = (2,3).

Centre is h, k and radius = 4.

As we know that,

General equation of circle,

⇒ x² + y² + 2gx + 2fy + c = 0.

We can write this equation as,

⇒ (x - h)² + (y - k)² = (r)².

Centre = (2,3).

Radius = 4.

Put the values in the equation, we get.

⇒ (x - 2)² + (y - 3)² = (4)².

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

Using this formula in equation, we get.

⇒ x² + 4 - 4x + y² + 9 - 6y = 16.

⇒ x² + y² - 4x - 6y + 4 + 9 - 16 = 0.

⇒ x² + y² - 4x - 6y - 3 = 0.

                                                                                                                           

MORE INFORMATION.

The parametric equation of circle.

(1) = The parametric equation of a circle : x² + y² = r² are,

⇒ x = r cosθ & y = r sinθ.

(2) = The parametric equation of the circle : (x - h)² + (y - k)² = r² are,

⇒ x = h + r cosθ & y = k + r sinθ.

(3) = Parametric equations of the circle : x² + y² + 2gx + 2fy + c = 0 are,

⇒ x = - g + √g² + f² - c  cosθ.

⇒ y = - f + √g² + f² - c sinθ.

Similar questions