Physics, asked by nithintm801, 7 months ago

Find the equation
of
capacitance
spherical conductor


shown below and
using
the equation
deduce
the
value of capacitance
of
earth (take radius of earth
as 6400 km)
+​

Answers

Answered by mitamodhu912
0

Answer:

HHHHHHHHHHHH hahahah happy birthday

Answered by nirman95
3

To derive:

Expression for capacitance of a spherical capacitor.

Derivation:

For a spherical capacitor of radius "r", we can say that its surface potential will be :

 \therefore \: V =  \dfrac{1}{4\pi  \epsilon_{0}}   \bigg(\dfrac{q}{r}  \bigg)

So, let capacitance be C ;

 \therefore \: C =  \dfrac{q}{V}

 =  >  \: C=  \dfrac{q}{\dfrac{1}{4\pi  \epsilon_{0}}   \bigg(\dfrac{q}{r}  \bigg)}

 =  >  \: C=  \dfrac{1}{\dfrac{1}{4\pi  \epsilon_{0}}   \bigg(\dfrac{1}{r}  \bigg)}

 =  >  \: C=  4\pi  \epsilon_{0} r

So, expression for capacitance is :

 \boxed{ \bold{ \large{\: C=  4\pi  \epsilon_{0} r}}}

Now , for earth , radius is 6400 km , putting the available values in SI units:

 =  >  \: C=  4\pi  \epsilon_{0}  \times (6400 \times  {10}^{3} )

 =  >  \: C=   \dfrac{1}{9 \times  {10}^{9} }  \times (6400 \times  {10}^{3} )

 =  >  \: C=   \dfrac{1}{9 \times  {10}^{6} }  \times (6400  )

 =  >  \: C=   \dfrac{711.11}{ {10}^{6} }

 =  >  \: C=   711.11 \times  {10}^{ - 6}  \: H

 \boxed{ \bold{ =  >  \: C=   711.11 \:  \mu H }}

HOPE IT HELPS.

Similar questions