Math, asked by saksham2709, 7 months ago

Find the equation of circle passing through a point (1,1) (2,-1) and (3,5)
...
Please solve fast, no wrong answer otherwise I will report

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{Points are (1,1), (2,-1) and (3,5)}

\mathsf{}

\underline{\textsf{To find:}}

\textsf{The equation of the circle pass through the given points}

\underline{\textsf{Solution:}}

\mathsf{Let\;the\;equation\;of\;the\;circle\be\;x^2+y^2+2gx+2fy+c=0}

\mathsf{Since the circle pass through points (1,1), (2,-1) and (3,5), we have}

\mathsf{1^2+1^2+2g(1)+2f(1)+c=0}

\mathsf{1+1+2g+2f+c=0}

\implies\mathsf{2g+2f+c=-2}......(1)

\mathsf{2^2+(-1)^2+2g(2)+2f(-1)+c=0}

\mathsf{4+1+4g-2f+c=0}

\implies\mathsf{4g-2f+c=-5}......(2)

\mathsf{3^2+5^2+2g(3)+2f(5)+c=0}

\mathsf{9+25+6g+10f+c=0}

\implies\mathsf{6g+10f+c=-34}......(3)

\mathsf{(1)-(2)\;\implies}

\mathsf{-2g+4f=3}.........(4)

\mathsf{(2)-(3)\;\implies}

\mathsf{-2g-12f=29}.......(5)

\mathsf{16f=32}

\implies\boxed{\mathsf{f=2}}

\mathsf{Put\;f=2\;in\;(4)}

\mathsf{-2g+8=3}

\mathsf{-2g=-5}

\implies\mathsf{g=\dfrac{5}{2}}

\textsf{Substitute the values of f and g in (1)}

\mathsf{5+4+c=-2}

\implies\boxed{\mathsf{c=-11}}

\textsf{Substituting the values of g,f and c}

\textsf{The equation of the required circle is}

\mathsf{x^2+y^2+2(\dfrac{5}{2})x+2(2)y-11=0}

\implies\boxed{\mathsf{x^2+y^2+5x+4y-11=0}}

\underrline{\textsf{Find more:}}

Find the equation of the circle passing through the points (1,2),(3,-4)and (5,-6)find the centre and rafius in each case

https://brainly.in/question/5281562

Find the equation of circle which passes through points (5,-8),(2,-9) and(2,1). Find also the coordinates of its centre and radius

https://brainly.in/question/7466726

Similar questions