Math, asked by aarohisingh28, 11 months ago

find the equation of circle with radius 1/12 and centre (1/2 , 1/4)​

Answers

Answered by Anonymous
3

ANSWER:-

Given:

•Radius of the circle,r= 1/12.

•Centre of the circle = (1/2, 1/4).

To find:

The equation of the circle.

Solution:

We know that equation of a circle;

=) (x-h)² + (y-k)²= r²

⚫It's given that centre (h,k)=(1/2, 1/4).

&

⚫Radius,(r)=(1/12).

Therefore,

Putting the given value of the equation of the circle:

(x -  \frac{1}{2} ) {}^{2}  + (y -  \frac{1}{4} ) {}^{2}  = ( \frac{1}{12} ) {}^{2}  \\  \\  =  >  {x}^{2}  + ( { \frac{1}{2} )}^{2}  - 2 \times x \times  \frac{1}{2}  +  {y}^{2}  + ( { \frac{1}{4}) }^{2}  - 2 \times y \times  \frac{1}{4}  =  \frac{1}{144}  \\  \\  =  >  {x}^{2}  +  \frac{1}{4}  - x +  {y}^{2}  +  \frac{1}{16}  -  \frac{y}{2} =  \frac{1}{144}  \\  \\  =  >  {x}^{2}   +  {y}^{2}  - x -  \frac{y}{2}  +  \frac{1}{4}  +  \frac{1}{16}  -  \frac{1}{144}  = 0 \\  \\  =  >  \frac{144 {x}^{2} + 144 {y}^{2}  - 144x - 72y + 34 + 9 + 1}{144}  = 0 \\  \\  =  > 144 {x}^{2}  + 144 {y}^{2}  - 144x - 72y + 44 = 0 \\  \\  =  > 4(36 {x}^{2}  + 36 {y}^{2}  - 36x - 18y + 11) = 0 \\  \\  =  > 36 {x}^{2}  + 36 {y}^{2}  - 36x - 18y  + 11 = 0

Thus,

The equation of the circle is;

=) 36x² + 36y² - 36x - 18y + 11=0.

Hope it helps ☺️

Similar questions