Math, asked by nikhilroyn6589, 4 months ago

Find the equation of ellipse if it passes through (3, 2) whose centre(0, 0) Eccentricity√3/2 and the major axis is on y-axis.

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Centre of the ellipse is (0,0) and}

\mathsf{eccentricity\;is\;\dfrac{\sqrt{3}}{2}}

\textbf{To find:}

\textsf{The equation of the ellipse}

\textbf{Solution:}

\textsf{Since the major axis is along y axis, the equation of ellipse}

\textsf{can be written as}

\mathsf{\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1}

\textsf{It passes throug (3,2)}

\mathsf{\dfrac{9}{b^2}+\dfrac{4}{a^2}=1}---------(1)

\mathsf{But,\;b^2=a^2(1-e^2)}

\mathsf{b^2=a^2\left(1-\dfrac{3}{4}\right)}

\mathsf{b^2=a^2\left(\dfrac{1}{4}\right)}

\mathsf{b^2=\dfrac{a^2}{4}}____(2)

\textsf{Using (2) in (1)}

\mathsf{\dfrac{9}{\dfrac{a^2}{4}}+\dfrac{4}{a^2}=1}

\mathsf{\dfrac{36}{a^2}+\dfrac{4}{a^2}=1}

\mathsf{\dfrac{40}{a^2}=1}

\implies\mathsf{a^2=40}

\mathsf{Now,\;b^2=\dfrac{40}{4}}

\mathsf{Now,\;b^2=10}

\therefore\textsf{The equation of the ellipse is}

\boxed{\mathsf{\dfrac{x^2}{10}+\dfrac{y^2}{40}=1}}

Answered by mahek77777
1

\textbf{Given:}

\textsf{Centre of the ellipse is (0,0) and}

\mathsf{eccentricity\;is\;\dfrac{\sqrt{3}}{2}}

\textbf{To find:}

\textsf{The equation of the ellipse}

\textbf{Solution:}

\textsf{Since the major axis is along y axis, the equation of ellipse}

\textsf{can be written as}

\mathsf{\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1}

\textsf{It passes throug (3,2)}

\mathsf{\dfrac{9}{b^2}+\dfrac{4}{a^2}=1}---------(1)

\mathsf{But,\;b^2=a^2(1-e^2)}

\mathsf{b^2=a^2\left(1-\dfrac{3}{4}\right)}

\mathsf{b^2=a^2\left(\dfrac{1}{4}\right)}

\mathsf{b^2=\dfrac{a^2}{4}}____(2)

\textsf{Using (2) in (1)}

\mathsf{\dfrac{9}{\dfrac{a^2}{4}}+\dfrac{4}{a^2}=1}

\mathsf{\dfrac{36}{a^2}+\dfrac{4}{a^2}=1}

\mathsf{\dfrac{40}{a^2}=1}

\implies\mathsf{a^2=40}

\mathsf{Now,\;b^2=\dfrac{40}{4}}

\mathsf{Now,\;b^2=10}

\therefore\textsf{The equation of the ellipse is}

\boxed{\mathsf{\dfrac\red{x^2}{10}+\dfrac\red{y^2}{40}=1}}

Similar questions