Math, asked by sanyuktakesawalekar0, 1 month ago

find the equation of ellipse who's foci (+- 3,0) are esentricity 3/5​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that the equation of ellipse be

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: provided \: that \: a > b

Now, Given that

\rm :\longmapsto\:foci \:  =  \: ( \pm \: 3,0)

We know,

\boxed{ \bf{ \: \bf :\longmapsto\:foci \:  =  \: ( \pm \: ae,0)}}

So,

\rm :\longmapsto\:( \pm \: ae,0) \:  =  \: ( \pm \: 3,0)

So, On comparing we get,

\rm :\longmapsto\:ae \:  =  \: 3 -  -  -  - (1)

Now, given ghat,

\rm :\longmapsto\:eccentricity, \: e \:  =  \: \dfrac{3}{5}

So, on substituting the value of e in equation (1), we get

\rm :\longmapsto\:a \times \dfrac{3}{5}  = 3

\bf\implies \:a \:  =  \: 5 -  -  -  - (2)

We know,

\rm :\longmapsto\: {b}^{2} =  {a}^{2}(1 -  {e}^{2})

\rm :\longmapsto\: {b}^{2} =  {a}^{2} -  {(ae)}^{2}

On substituting the values of a and ae, we get

\rm :\longmapsto\: {b}^{2} =  {5}^{2} -  {3}^{2}

\rm :\longmapsto\: {b}^{2} = 25 - 9

\bf :\longmapsto\: {b}^{2} = 16 -  -  - (3)

So, on substituting the values in

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \:

we get

\bf :\longmapsto\:\dfrac{ {x}^{2} }{ 25}  + \dfrac{ {y}^{2} }{ 16 }  = 1 \:

is the required equation of ellipse.

Additional Information :-

For the ellipse,

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: provided \: that \: a > b

1. Center = ( 0, 0 )

2. Vertex = ( a, 0 ) and ( - a, 0 ).

3. Length of major axis = 2a

4. Length of minor axis = 2b

5. Length of Latus Rectum = 2b^2 / a

6. Distance between foci = 2ae

7. Distance between directrix = 2a/e.

For the ellipse

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: provided \: that \: a  <  b

1. Center = ( 0, 0 )

2. Vertex = ( 0, b ) and ( 0, - b ).

3. Length of major axis = 2b

4. Length of minor axis = 2a

5. Length of Latus Rectum = 2a^2 / b

6. Distance between foci = 2be

7. Distance between directrix = 2b/e.

Similar questions