Math, asked by Matatagi2039, 1 year ago

Find the equation of hyperbola in standard with foci (2,5) and (2,9) with eccentricity 4

Answers

Answered by abhi178
0
For hyperbola we know,
the difference of focal distance of any point on the hyperbola is equal to Length of transverse axis of the hyperbola .

Let P (x, y) is the point on hyperbola,
Let S(2, 9) and S'(2, 5)
Length of transverse axis = (9 - 5)/4 = 1
for hyperbola ,
SP - S'P = length of transverse axis
√{(x -2)² +(y-9)²} - √{x-2)²+(y-5)²}= 1
√{(x-2)²+ (y-9)²} = 1 + √{(x-2)² +(y-5)² }
take square both sides,
(x-2)² + (y-9)² = 1 + (x-2)² + (y-5)² +2√{(x-2)²+(y-5)²}
(y-9)²-(y-5)² -1 = 2√{(x-2)²+(y-5)²}
-18y +81 +10y -25 -1 = 2√{(x-2)²+(y-5)²}
(-8y +55)/2 = √{(x-2)²+(y-5)²}
take square both sides,
(-8y +55)²= 4(x-2)² + 4(y-5)² is the equation of hyperbola
Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=4(x-2)^{2}-30(y-7)^{2}=-15}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (2,5)\:and\:(2,9)} \\  \\   \tt{ : \implies Eccentricity(e) = 4} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   -\frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = 2be } \\  \\   \tt{ : \implies Foci \ =  \sqrt{(2-2)^{2}+(9-5)^{2}}=4} \\  \\   \tt{ : \implies 2be = 4} \\  \\    \tt{: \implies b \times {4} = 2} \\  \\    \green{ \tt{: \implies b = \frac{1}{2}} }\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1)} \\  \\   \tt{:  \implies  {a}^{2}  =  {(\frac{1}{2})}^{2} ( 4^{2}  - 1)} \\  \\ \green{   \tt{ : \implies   {a}^{2}  = \frac{1}{4}\times 15} }\\  \\    \tt{: \implies   {a}^{2} = \frac{15}{4}} \\\\  \tt{:\implies Co-ordinate\:of\:centre=\frac{2+2}{2},\frac{5+9}{2}}\\\\ \tt{:\implies Co-ordinate\:of\:centre=(2,7) }\\\\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  -\frac{ {(x-2)}^{2} }{\frac{15}{4}}  +  \frac{ {(y-7)}^{2} }{\frac{1}{2}}  = 1}} \\  \\    \green{\tt{\therefore Eqn \: of \:hyperbola  \: is \: 4{(x-2)}^{2}  -  30{(y-7)}^{2}  = -15}}

Similar questions