Math, asked by surbhiarora7555, 8 months ago

Find the equation of hyperbola whose centre is 1,2 the distance between the directrices is 20/3 the distance between the foci is 30 the traverse axis is parallel to x axis

Answers

Answered by amansharma264
2

EXPLANATION.

Equation of hyperbola

=> centre = (1,2)

=> distance between directrices = 20/3

=> distance between foci = 30.

=> The transverse axis is parallel to x axis.

 \sf :  \implies \: distance \: between \: directrices \:  =  \dfrac{2b}{e}  =  \dfrac{20}{3}  \\  \\ \sf :  \implies \:  \frac{b}{e}  =  \frac{10}{3}  \:  \:  \: .....(1) \\  \\ \sf :  \implies \: distance \: between \: foci \:  = 2be \:  = 30 \\  \\ \sf :  \implies \: be \:  = 15 \:  \:  \:  \: .......(2)

\sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \\  \\ \sf :  \implies \:  \frac{b}{e}  \times be \:  =  \frac{10 \times 15}{3}  \\  \\ \sf :  \implies \:  {b}^{2}  = 50 \\  \\ \sf :  \implies \: b \:  = 5 \sqrt{2}

\sf :  \implies \: put \: the \: value \: of \: b \:  = 5 \sqrt{2}  \:  \:  \: in \:  \: equation \: (2) \\  \\ \sf :  \implies \: e \:  =  \frac{15}{b}  \\  \\ \sf :  \implies \: e \:  =  \frac{15}{5 \sqrt{2} }  \times  \frac{5 \sqrt{2} }{5 \sqrt{2} }  =  \frac{75 \sqrt{2} }{50}  =   \frac{3 \sqrt{2} }{2}

\sf :  \implies \: as \: we \: know \: that \\  \\ \sf :  \implies \:  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1) \\  \\ \sf :  \implies \:  {a}^{2}  = 50( \frac{18}{4}  - 1) \\  \\ \sf :  \implies \:  {a}^{2}  = 50( \frac{18 - 4}{4} ) \\  \\ \sf :  \implies \:  {a}^{2}  =  \frac{50 \times 14}{4}  = 175

\sf :  \implies \: equation \: of \: hyperbola \:  =  \dfrac{ {x}^{2} }{ {a}^{2} }  -  \dfrac{ {y}^{2} }{ {b}^{2} }  =  - 1 \\  \\ \sf :  \implies \:  \frac{(x - 1) {}^{2} }{175}  \:  -  \:  \frac{(y - 2) {}^{2} }{50}  =  - 1

Similar questions