find the equation of hyperbola with the centre at the origin ,transverse axis 12 and one of the foci at (3,√5,0)
Answers
Answer :
Substituting ( 2 ) in ( 1 ) we get,
Substituting ( 2 ) in ( 1 ) we get,⇒ a
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a 2
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a 2 +9a−5a−45=0
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a 2 +9a−5a−45=0⇒ a(a+9)−5(a+9)=0
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a 2 +9a−5a−45=0⇒ a(a+9)−5(a+9)=0⇒ (a+9)(a−5)=0
Substituting ( 2 ) in ( 1 ) we get,⇒ a 2 +4a=45⇒ a 2 +4a−45=0⇒ a 2 +9a−5a−45=0⇒ a(a+9)−5(a+9)=0⇒ (a+9)(a−5)=0So, a=5 or a=−9