Math, asked by jeeva651, 3 months ago

find the equation of line passing through (-1 1) and (2 -4)​

Answers

Answered by mittalsapna19
7

Step-by-step explanation:

equation of line passing through (-1,1) =

x + y = 0

x - y = -2

equation of line passing through (2,-4) =

2x + y = 0

2x + y = 0x -2y = 10

Answered by ItzWhiteStorm
37

Question: \:\:\:\:\:\:Find the equation of line passing through (-1,1) and (2,-4).

\\

To Find: \:\:\:\:\:\:Equation of the line = ?

\\

Solution:

\\

Let us consider that,

  \large\sf{x_1 = -1 ,x_2 = 2}

 \large \sf{y_1 = 1 , y_2 = -4}

\\

We know that,

 \LARGE \:  \:  \:  \:  \:  \:  \:  \:  \bullet  \:  \: \sf{\frac{y - y_1}{x - x_1} =\frac{y_2- y_1}{x_{2} - x_1}}

\\

Applying the values,

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \longrightarrow \large \sf{ \frac{y - 1}{x - ( -1 )} =  \frac{( - 4) - 1}{2 - ( - 1)} }

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \longrightarrow \large \sf{ \frac{y - 1}{x  + 1} =  \frac{ - 4 - 1}{2  + 1} }

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \longrightarrow \large \sf{ \frac{y - 1}{x  + 1} =  \frac{- 5}{3}}

\\

While doing the cross multiplication, we get:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow\sf{3(y-1)=-5(x+1)}</p><p> \\ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \longrightarrow\sf{3y-3=-5x-5} \\\:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \longrightarrow\sf{3y  -  5x  - 3  + 5= 0} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \longrightarrow\sf{ - 5x + 3y+ 2 = 0}  \\  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \: \longrightarrow\sf{5x  -  3y - 2 = 0} \\  \\  \bf{ \therefore \: the \: required \: answer \: is \: 5x - 3y - 2 = 0}

Similar questions
Math, 10 months ago