Math, asked by Sharmaankit, 1 year ago

find the equation of line passing through Point (2, 2 root 3) and inclined with x-axis at the angle of 75 degree

Answers

Answered by TheUrvashi
68
<b>As we know that equation of line passing through point(x,y) when slope m is

y -y_0 = m (x-x_0)

Here point (x_0,y_0) = (2,2√3)

Hence x_0= 2,y_0 = 2√3

and slope m= tan Ѳ

Given Ѳ = 75°

m = tan (75°)

= tan(45 + 30)°

 =\frac{ \tan(45°) + \tan(30°) }{ 1 - \tan(45°) \tan(30°) } <br /><br />\\ using \: tan(A+B) = \frac{tan \: A+ tan \: B}{1 - tan A \: \: tan B}

 = \frac{ 1 + \frac{1}{ \sqrt{3} } }{1 - \frac{1}{\sqrt{3} } } \\ \\

 = \frac{ \frac{ \sqrt{3 } + 1 }{ \sqrt{3} } }{ \frac{ \sqrt{3} - 1 }{ \sqrt{ 3} } } \\ \\

 \frac{ \sqrt{3} + 1}{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3 + 1} } \\ \\ m = \frac{ \sqrt{3} + 1}{ \sqrt{3} - 1}

Putting values in

y - y_0 = m(x- x_0)

y - 2 \sqrt{3} = \frac{ \sqrt{3} + 1}{ \sqrt{3} - 1 } (x - 2) \\

(y - 2 \sqrt{3})( \sqrt{3 } - 1) = (\sqrt{3} + 1)(x - 2)    \\
y( \sqrt{3} - 1) - 2 \sqrt{3} ( \sqrt{3} - 1) = x( \sqrt{3} + 1) - 2 \sqrt{3} + 1) \\   \\
y( \sqrt{3} - 1) - 2 \sqrt{3} \times \sqrt{3} + 2 \sqrt{3} = x( \sqrt{3} + 1) - 2 \sqrt{3} - 2)

y( \sqrt{3} - 1) - 6 + 2 \sqrt{3} = x( \sqrt{3} + 1) - 2 \sqrt{3} - 1

y( \sqrt{3} - 1) = x( \sqrt{3} + 1) - 2\sqrt{3} - 2 + 6 - 2\sqrt{3}

y( \sqrt{3} - 1) - = x( \sqrt{3} + 1) - 4\sqrt{3} + 4 \\  \\ y( \sqrt{3} - 1) - x( \sqrt{3} + 1)= - 4 \sqrt{3} + 4 \\  \\

y (\sqrt{3} - 1) - x( \sqrt{3} + 1) = 4( - \sqrt{3} + 1) \\  \\ x( \sqrt{3} + 1) - y (\sqrt{3} - 1) = 4(1 - \sqrt{3} )

TheUrvashi: Done !!!
Sharmaankit: yaaas
axypareek: hy riya
Similar questions