Math, asked by yadavpurshotam69, 5 months ago

find the equation of line passing through the given point and making the given angle with the given line( 2, -1), angle 45°, line 6 X + 5 Y - 1 =0​

Answers

Answered by amrita8729
27

Answer:

EXPLANATION.

\begin{gathered} \sf : \implies \: a \: circular \: race \: track \: of \: 300m \: \\ \\ \sf : \implies \: banked \: at \: an \: angle \: of \: 15 \degree \\ \\ \sf : \implies \: coefficient \: of \: friction \: between \: the \: wheels \: of \: race \: car \: and \: road = 0.2 \\ \\ \sf : \implies \: \mu \: = 0.2\end{gathered}

:⟹acircularracetrackof300m

:⟹bankedatanangleof15°

:⟹coefficientoffrictionbetweenthewheelsofracecarandroad=0.2

:⟹μ=0.2

\begin{gathered} \sf : \implies \: \orange{{ \underline{1) = optimum \: speed \: of \: race \: car \: to \: avoid \: wear \: and \: tear \: on \: its \: tires \: }}} \\ \\ \sf : \implies \: \tan( \theta) = \frac{ {v}^{2} }{rg} \\ \\ \sf : \implies \: {v}^{2} = rg \tan( \theta) \\ \\ \sf : \implies \: {v}^{2} = 300 \times 10 \times \tan(15 \degree) \\ \\ \sf : \implies \: {v}^{2} = 300 \times 10 \times 0.26 \\ \\ \sf : \implies \: {v}^{2} = 780 \\ \\ \sf : \implies \: v \: = \sqrt{780} \approx \: 28\end{gathered}

:⟹

1)=optimumspeedofracecartoavoidwearandtearonitstires

:⟹tan(θ)=

rg

v

2

:⟹v

2

=rgtan(θ)

:⟹v

2

=300×10×tan(15°)

:⟹v

2

=300×10×0.26

:⟹v

2

=780

:⟹v=

780

≈28

\begin{gathered} \sf : \implies \: \orange{{ \underline{2) = maximum \: permissible \: speed \: to \: avoid \: slipping}}} \\ \\ \sf : \implies \: v_{m} \: = \sqrt{Rg \: ( \frac{ \mu \: + \tan( \theta) }{1 - \mu \: \tan( \theta) } }) \\ \\ \sf : \implies \: v_{m} \: = \sqrt{300 \times 10( \frac{0.2 \times \tan(15 \degree) }{1 - 0.2 \tan( 15 \degree) } } ) \\ \\ \sf : \implies \: v_{m} \: = \sqrt{3000( \frac{0.2 \times 0.26}{1 - 0.2 \times 0.26} } ) \\ \\ \sf : \implies \: v_{m} \: = \sqrt{1458.7} = 38.19 \: ms {}^{ - 1} \end{gathered}

:⟹

2)=maximumpermissiblespeedtoavoidslipping

:⟹v

m

=

Rg(

1−μtan(θ)

μ+tan(θ)

)

:⟹v

m

=

300×10(

1−0.2tan(15°)

0.2×tan(15°)

)

:⟹v

m

=

3000(

1−0.2×0.26

0.2×0.26

)

:⟹v

m

=

1458.7

=38.19ms

−1

Similar questions