Math, asked by tejas103, 1 year ago

find the equation of line passing through the point of intersection of line x-5y-17=0 and 8x+3y-7=0 and which makes equal intercept on the coordinate axis

Answers

Answered by MaheswariS
5

\textbf{Given:}

\textsf{Lines are x-5y-17=0 and 8x+3y-7=0}

\textbf{To find:}

\textsf{The equation of  the line passing through the point of}

\textsf{intersection of the given two lines}

\textbf{Solution:}

\textsf{First we find out point of intersection of the given lines}

\mathsf{x-5y-17=0}

\mathsf{8x+3y-7=0}

\textsf{By cross multiplication rule,}

\mathsf{\dfrac{x}{35+51}=\dfrac{y}{-136+7}=\dfrac{1}{3+40}}

\mathsf{\dfrac{x}{96}=\dfrac{y}{-129}=\dfrac{1}{43}}

\mathsf{x=\dfrac{96}{43}=2}

\mathsf{y=\dfrac{-129}{51}=-3}

\textsf{The point of intersection is (2,-3)}

\textsf{Equation of the line passing through point of intersection}

\textsf{of given lines in intercept form can be written as}

\mathsf{\dfrac{x}{a}+\dfrac{y}{b}=1}

\mathsf{But\;a=b}

\mathsf{\dfrac{x}{a}+\dfrac{y}{a}=1}

\mathsf{x+y=a}

\textsf{This line passes through (2,-3)}

\mathsf{2-3=a}

\mathsf{a=-1}

\therefore\textsf{The required line is x+y+1=0}

\textbf{Find more:}

Find the equation of line passing through the point (5,6) and making equal intercept on x & y axis​

https://brainly.in/question/13417461

If the line (x-y+1) + k(y-2k+4) =0 makes equal intercepts on the axes . Then what is the value of k

https://brainly.in/question/16765896

Answered by genius1947
2

\underline\texttt{☆Given:-}

\textsf{Lines are x-5y-17=0 and 8x+3y-7=0}

\underline\texttt{☆To find:-}

\textsf{The equation of  the line passing through the point of}

\textsf{intersection of the given two lines}

\underline\texttt{☆Solution:}

\textsf{First we find out point of intersection of the given lines}

\mathsf{x-5y-17=0}

\mathsf{8x+3y-7=0}

\underline\textsf{☆By cross multiplication rule,}

\mathsf{\dfrac{x}{35+51}=\dfrac{y}{-136+7}=\dfrac{1}{3+40}}

\mathsf{\dfrac{x}{96}=\dfrac{y}{-129}=\dfrac{1}{43}}

\mathsf{x=\dfrac{96}{43}=2}

\mathsf{y=\dfrac{-129}{51}=-3}

\textsf{The point of intersection is (2,-3)}

\textsf{Equation of the line passing through point of intersection}

\textsf{of given lines in intercept form can be written as}

\mathsf{\dfrac{x}{a}+\dfrac{y}{b}=1}

\mathsf{But\;a=b}

\mathsf{\dfrac{x}{a}+\dfrac{y}{a}=1}

\mathsf{x+y=a}

\textsf{This line passes through (2,-3)}

\mathsf{2-3=a}

\mathsf{a=-1}

\therefore\underline\textsf{☆The required line is x+y+1=0}

\small{\textbf{\textsf{{\color{navy}\:{☆Hope}}\:{\purple{it}}\:{\pink{helps}}\:{\color{pink}{you!!☆}}}}}

Similar questions