Math, asked by dholu51, 11 months ago

Find the equation of line through (3,2) and making an intercept a and b on the x-axis and y-axis respectively such that a-b=2​

Answers

Answered by sahildhande987
171

\huge{\underline{\sf{\red{Answer}}}}

_______________________________________

Given:

★ Line Pass through point (3,2)

★ Slope of line wil be -ve since a and b are intercepts

★ a-b=2

_______________________________________

\huge{\underline{\underline{\green{\tt{Formula}}}}}

\dfrac {x}{a} +\dfrac {y}{b} =1

_______________________________________

\huge{\underline{\tt{SoluTion}}}

 \dfrac {3}{a} + \dfrac {4}{b} = 1   \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{(a=b+2)} \\ \\ \implies\dfrac {3}{b+2} + \dfrac {4}{b} =1 \\ \\ \implies 3b+4b+8 =b^2 +2b \\ \\ \implies b^2 -5b-8  \\ \\ b=2 \\ \\ a=2+2 =4 \\ \\ \dfrac {x}{4} + \dfrac {y}{2} =1 \\ \\ \impies \boxed{x+2y-4}

Answered by Anonymous
9

Answer:

Given:

★ Line Pass through point (3,2)

★ Slope of line wil be -ve since a and b are intercepts

★ a-b=2

_______________________________________

\huge{\underline{\underline{\green{\tt{Formula}}}}}

Formula

\dfrac {x}{a} +\dfrac {y}{b} =1

a

x

+

b

y

=1

_______________________________________

\huge{\underline{\tt{SoluTion}}}

SoluTion

Similar questions