Math, asked by santoshamelia, 7 months ago

Find the equation of line which passes through the point (-1,2) and whose distance from the origin is 1 unit.
Please answer as soon as possible.

Answers

Answered by simranjeetkaur36848
34

Answer:

equation of line passing through point(-1,2)is

y-2=m(X+1)

y-2=mx+m

mx-y+(m+2)=0

perpendicular distance form origin is|ax+bx+c|\√a²+b²

1=|m+2|/√m²+1

1=(m+2)²/m²+1

m²+1=(m+2)²

m²+1=m²+4m+4

m=-3/4

so eqn of line is:

-3x-4y+5=0

3x+4y-5=0

which is required eqn of a line.

Step-by-step explanation:

hope you like my answer please add this to brainlist.

Answered by amansharma264
51

EXPLANATION.

→ equation of line which passes through the

point (-1,2).

→ distance from the origin is 1 unit.

 \sf :  \implies \: equation \: of \: line \\  \\ \sf :  \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\  \sf :  \implies \: (2 -  y_{1}) = m( - 1 -  x_{1}) \\  \\ \sf :  \implies \: 2 -  y_{1} =  - m -  mx_{1} \\  \\ \sf :  \implies \: m x_{1} -  y_{1} + m + 2 = 0 \:  \:  \: .....(1)

→ distance from origin = 1 unit

→ coordinate of origin = (0,0)

\sf :  \implies \: formula \: of \: perpendicular \: distance \\  \\ \sf :  \implies \: d \:  =  | \frac{a x_{1} + b y_{1} + c  }{ \sqrt{ {a}^{2}  +  {b}^{2} } } | \\  \\  \sf :  \implies \: 1 =  | \frac{m(0) + ( - 1)(0) + (m + 2)}{ \sqrt{ {m}^{2} + ( - 1) {}^{2}  } } | \\  \\ \sf :  \implies \: 1 =  | \frac{m + 2}{ \sqrt{ {m}^{2}  + 1} } | \\  \\  \sf :  \implies \:  \sqrt{ {m}^{2}  + 1}  = m + 2 \\  \\ \sf :  \implies \: squaring \: on \: both \: sides \:  \: we \:  \: get

\sf :  \implies \:  {m}^{2} + 1 = (m + 2) {}^{2}  \\  \\  \sf :  \implies \:  {m}^{2} + 1 =  {m}^{2}  + 4 + 4m \\  \\  \sf :  \implies \:  - 3 = 4m \\  \\ \sf :  \implies \: m \:  =  \frac{ - 3}{4}  = slope \:

\sf :  \implies \: put \: the \: value \: in \: equation \: (1) \\  \\ \sf :  \implies \:  \frac{ - 3}{4}  x_{1} -  y_{1}  \: +   \: ( \frac{ - 3}{4} ) + 2 = 0 \\  \\ \sf :  \implies \:  \frac{ - 3x - 4y - 3 + 8}{4}  = 0 \\  \\ \sf :  \implies \:  - 3x - 4y + 5 = 0 \\  \\ \sf :  \implies \:  - (3x + 4y - 5) = 0 \\  \\ \sf :  \implies \: 3x + 4y - 5 = 0 \:

Similar questions