find the equation of locus of a point which is equidistant from the point A( and B (0 4
Answers
Answer: Let P(h,k) be any point in the locus.
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we have
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.Thus, locus of P is x
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.Thus, locus of P is x 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.Thus, locus of P is x 2 −y
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.Thus, locus of P is x 2 −y 2
Let P(h,k) be any point in the locus.Let PM be the perpendicular distance of P fro x-axis, i.e.,PM=∣x∣Let PNeft be the perpendicular distance of P fro y-axis, i.e.,PN=∣y∣∵PM=PN(Given)⇒∣x∣=∣y∣Squaring both sides, we havex 2 =y 2 ⇒x 2 −y 2 =0.Thus, locus of P is x 2 −y 2 =0.
It's an example
Hope it helps you in finding your answer