Math, asked by lsk27, 8 hours ago

find the equation of lous of P Ratio of distance from p to A (5,-4) & B (7,6) - is 2:3​

Answers

Answered by Anonymous
165

\circledcirc\sf Answer:-

The equation of locus point P is

\sf 5x^2+5y^2-34x+120y+29=0

\circledcirc \sf Given :-

The equation of Locus point P the Distance from point A (5, -4) and point B (7,6 ) in ratio 2:3

\circledcirc \sf To\: find :-

Equation of locus

\circledcirc \sf Solution :-

Let the co-ordinates of point P =(x,y) As, they given Distance between from point A and point B in ratio 2:3

  • Let the distance between P and A is PA
  • The distance between P and B is PB

According to the Question ,

\sf \dfrac{PA}{PB} = \dfrac{2}{3}

We can find distance between them by using Distance formula,

\sf Distance\: formula = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

\sf PA = \sqrt{(x-5)^2+(y+4)^2}

\sf PB = \sqrt{(x-7)^2+(y-6)^2}

\sf \dfrac{PA}{PB} = \dfrac{2}{3}

\sf \dfrac{\sqrt{(x-5)^2+(y+4)^2}}{\sf\sqrt{(x-7)^2+(y-6)^2}}=\dfrac{2}{3}

Squaring on both sides

\bigg(\sf \dfrac{\sqrt{(x-5)^2+(y+4)^2}}{\sf\sqrt{(x-7)^2+(y-6)^2}}\bigg)^2=\bigg(\dfrac{2}{3}\bigg)^2

\sf\dfrac{(x-5)^2+(y+4)^2}{(x-7)^2+(y-6)^2} =\dfrac{4}{9}

Simplifying the numerator and denominator by (a+b)^2 and (a-b)^2

  • (a+b)²= a²+2ab+b²
  • (a-b)² = a²-2ab+b²

\sf\dfrac{x^2+25-10x+y^2+16+8y}{x^2+49-14x+y^2+36-12y} =\dfrac{4}{9}

\sf\dfrac{x^2+y^2-10x+8y+41}{x^2+y^2+85-14x-12y} =\dfrac{4}{9}

Do cross multiplication

\sf{(x^2+y^2-10x+8y+41)}9=({x^2+y^2+85-14x-12y})4

\sf{9x^2+9y^2-90x+72y+369}={4x^2+4y^2+340-56x-48y}

Transpose all terms to L.H.S

\sf9x^2+9y^2-90x+72y+369-4x^2-4y^2-340+56x+48y=0

\sf 5x^2+5y^2-34x+120y+29=0

So, the equation of locus point P is

\sf\red{ 5x^2+5y^2-34x+120y+29=0}

Answered by Limafahar
34

\large\boxed{\textsf{\textbf{\red{Question\::-}}}}

  • find the equation of lous of P Ratio of distance from p to A (5,-4) & B (7,6) - is 2:3

\large\boxed{\textsf{\textbf{\red{Answer\::-}}}}

  • Find the equation of locus of P, if the ratio of the distance from P(5,−4) and (7,6) is 2:3

Let \:  P  = (x,y)

Distance  \: from \:  P  \: to  (5,4)= \sqrt{(x - 5 {}^{2} + (y + 4) {}^{2}  }

Distance \:  from \:  P \:  to  \: (7,6)= \sqrt{(x - 7) {}^{2}  + (y + 6) {}^{2} }

Given \:  ratio \:  of  \: distance =2:3

⇒ \frac{ \sqrt{(x - 5) {}^{2} + (y + 4) {}^{2}   } }{ \sqrt{(x - 7) {}^{2} + (y - 6) {}^{2}  } }  =  \frac{2}{3}

squaring on both sides :-

⇒ \frac{ {x}^{2} + 25 - 10x +  {y}^{2}  + 16 + 8y }{ {x}^{2}  + 49 - 14x +  {y}^{2}  + 36 - 12y}  =  \frac{4}{9}

⇒9x {}^{2}  + 255  - 90x + 9y {}^{2}  + 144 + 72y =

4x {}^{2}  + 196 - 56x + 4y {}^{2}  + 144 - 48y

⇒5 {x}^{2}  + 5y {}^{2}  - .34x + 120y + 31 = 0

Similar questions