Math, asked by devsrivastava1109, 8 months ago

find the equation of median AD in triangle ABC whose verices are A(1,3) B(0,4) and C(5,2)​

Answers

Answered by PhilipTheGreat
0

Step-by-step explanation:

since AD,BE,CF are the medians of ΔABC

therefore D,E,F are the midpoints of BC,CA,AB respectively

Hence coordinates ofD=(  

2

2+0

​  

,  

2

1+4

​  

)=(1,  

2

5

​  

)

coordinate of E=(  

2

0+(−1)

​  

,  

2

4+2

​  

)=(  

2

−1

​  

,3)

coordinate of F=(  

2

−1+2

​  

,  

2

2+1

​  

)=(  

2

1

​  

,  

2

3

​  

)

Equation of median AD is given as ;  

2−  

2

5

​  

 

y−  

2

5

​  

 

​  

=  

−1−1

x−1

​  

 

⇒x−4y+9=0⟶(1)

Equation of median BE is given as;  

1−3

y−3

​  

=  

2−(  

2

−1

​  

)

x−(  

2

−1

​  

)

​  

 

⇒4x+5y−13=0⟶(2)

Equation of median CF is given as;  

4−  

2

3

​  

 

y−  

2

3

​  

 

​  

=  

0−  

2

1

​  

 

x−  

2

1

​  

 

​  

 

⇒10x+2y−8=0⟶(3)

Also the coordinate of the centroid O of ΔABC is given as ;

O  

x

​  

=  

3

A  

x

​  

+B  

x

​  

+C  

x

​  

 

​  

=  

3

−1+2+0

​  

=  

3

1

​  

 

O  

y

​  

=  

3

A  

y

​  

+B  

y

​  

+C  

y

​  

 

​  

=  

3

2+1+4

​  

=  

3

7

​  

 

∴(O  

x

​  

,O  

y

​  

)=(  

3

1

​  

,  

3

7

​  

)

Similar questions