find the equation of p, if the line segment joining (2,3) & (-1,5) substands a right angle at p.
Answers
Given:-
- Coordinates of Q = (2,3)
- Coordinates of R = (-1,5)
- Angle QPR = 90°
To find:-
- the coordinates of P.
Solution :-
Let the coordinates of P be (x,y).
∠QPR = 90°
By using Pythagoras theorem in ∆PQR,
⇒ QR² = PQ² + PR²
⇒ (distance between QR)² = (distance between PQ)² + (distance between PR)²
⇒ (x – 2)² + (y – 3)² + (x + 1)² + (y – 5)² = (–1 – 2)² + (5 – 3)²
⇒x² +4 - 4x + y² + 9 - 6y + x² + 1 +2x + y² + 25 -10y = 9 + 4
⇒ 2x² + 2y² -16y -2x + 26 = 0
⇒ x² + y² – x – 8y + 13 = 0
∴ the locus of point P, having coordinates (x,y) is given by x² + y² – x – 8y + 13 = 0.
Related info:-
➸ Pythagoras theorem:
(Hypotenous)² = (perpendicular)² + (base)²
➸ Distance formula :
= (x2 - x1)² + (y2 - y1)²
➸ (a+b)² = a² + b² + 2ab
ㅤ(a-b)² = a² + b² - 2ab
Answer:
⭐ Question ⭐
✏ Find the equation of p, if the line segment joining (2,3) & (-1,5) substands a right angle at p.
⭐ Given ⭐
⚫ Coordinates of Q = (2,3)
⚫ Coordinates of R = (-1,5)
⚫ Angle QPR = 90°
⭐ To Find ⭐
✏ The coordinates of P.
⭐ Solution ⭐
✏ Let the coordinates of P be (x,y). ∠QPR = 90°
✏ By using Pythagoras theorem in ∆PQR
=> QR² = PQ² + PR²
=> (x – 2)² + (y – 3)² + (x + 1)² +
(y – 5)² = (-1– 2)²+ (5 – 3)²
=> x²+4 - 4x + y² + 9 - 6y + x² + 1 +2x + y²+ 25 -10y = 9 + 4
=> 2x² + 2y² -16y -2x + 26 = 0
=> x²+ y²– x - 8y + 13 = 0
=> The locus of point P, having coordinates (x,y) is given by x² + y²- x- 8y + 13 = 0.
Step-by-step explanation: