Math, asked by insenreddy333, 3 days ago

find the equation of plane passing through intersection of Plane x+y+z=1, 2x+ 3y+4z=5 to perpendicular to plane X-y+z=0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let us assume that,

\rm :\longmapsto\:P_1 : x + y + z - 1 = 0

and

\rm :\longmapsto\:P_2 : 2x + 3y + 4z - 5 = 0

So, required equation of plane which passes through the line of intersection of planes x + y + z - 1 = 0 and 2x + 3y + 4z - 5 = 0 is

\sf :\longmapsto\:x + y + z - 1 + k(2x + 3y + 4z - 5) = 0

\sf :\longmapsto\:x + y + z - 1 + 2kx + 3ky + 4kz - 5k = 0

 \red{\sf :\longmapsto\:(1 + 2k)x + (1 + 3k)y + (1 + 4k)z -(1 + 5k) = 0 -  - (1)}

Now, this plane is perpendicular to the plane x - y + z = 0.

We know,

Two planes ax + by + cz + d = 0 and px + qy + rz + s = 0 are perpendicular iff ap + bq + cr = 0.

So, using this, we get

\rm :\longmapsto\:(1 + 2k)(1) + (1 + 3k)( - 1) + (1 + 4k)(1) = 0

\rm :\longmapsto\:1 + 2k  -  1  -  3k + 1 + 4k = 0

\rm :\longmapsto\:3k + 1 = 0

\rm :\longmapsto\:3k  =  - \:   1

\bf\implies \:k \:  =  \:  -  \: \dfrac{1}{3}

Now, on substituting this value of k in equation (1), we get

\rm :\longmapsto\:\bigg[1 - \dfrac{2}{3} \bigg]x + \bigg[1 - \dfrac{3}{3} \bigg]y + \bigg[1 - \dfrac{4}{3} \bigg]z - \bigg[1 - \dfrac{5}{3} \bigg] = 0

\rm :\longmapsto\:\bigg[\dfrac{1}{3} \bigg]x + \bigg[1 - 1 \bigg]y  -  \bigg[ \dfrac{1}{3} \bigg]z  +  \bigg[ \dfrac{2}{3} \bigg] = 0

\rm :\longmapsto\:\dfrac{x}{3} -  \dfrac{z}{3} +  \dfrac{2}{3}  = 0

\bf\implies \:x - z  +  2 = 0

So,

Required equation of plane passing through line of intersection of plane x+y+z=1 and 2x+ 3y+4z=5 and perpendicular to plane x-y+z=0 is x - z + 2 = 0.

Additional Information :-

1. Equation of plane is

\boxed{ \tt{ \: \vec{r}.\vec{n} \:  =  \: d \: }}

Let us consider two planes

\boxed{ \tt{ \: \vec{r}.\vec{n_1} \:  =  \: d \: }}

and

\boxed{ \tt{ \: \vec{r}.\vec{n_2} \:  =  \: d \: }}

2. Two planes are perpendicular iff

\rm :\longmapsto\:\boxed{ \tt{ \: \vec{n_1}.\vec{n_2} = 0 \: }}

3. Two planes are parallel iff

\rm :\longmapsto\:\boxed{ \tt{ \: \vec{n_1} \times \vec{n_2} = 0 \: }}

4. Angle between two planes is given by

\rm :\longmapsto\:\boxed{ \tt{ \: cos  \theta \:  =  \:  \frac{\vec{n_1}.\vec{n_2}}{ |\vec{n_1}|  \:  |\vec{n_2}| }  \: }}

Answered by senboni123456
2

Answer:

Step-by-step explanation:

Given equations of plane :

\tt{x+y+z=1}\\\tt{2x+3y+4z=5}

Any plane passing through the intersection of the given planes is

\sf{(x+y+z-1)+\lambda(2x+3y+4z-5)=0}

\sf{\implies\,x+y+z-1+2\lambda\,x+3\lambda\,y+4\lambda\,z-5\lambda\,=0}

\sf{\implies\,\boxed{\blue{(1+2\lambda)x+(1+3\lambda)y+(1+4\lambda)z-(1+5\lambda)=0}}\,\,\,\,\,\,\,\,...(1)}

Now, this plane is perpendicular to the plane \sf{x-y+z=0}

So,

\sf{(1+2\lambda)(1)+(1+3\lambda)(-1)+(1+4\lambda)(1)=0}

\sf{\implies1+2\lambda-1-3\lambda+1+4\lambda=0}

\sf{\implies2\lambda-3\lambda+1+4\lambda=0}

\sf{\implies3\lambda+1=0}

\sf{\implies\lambda=-\dfrac{1}{3}}

Put the value of λ in (1), we get,

\sf{\implies\,\bigg(1-\dfrac{2}{3}\bigg)x+\bigg(1-\dfrac{3}{3}\bigg)y+\bigg(1-\dfrac{4}{3}\bigg)z-\bigg(1-\dfrac{5}{3}\bigg)=0}

\sf{\implies\,\bigg(\dfrac{3-2}{3}\bigg)x+\bigg(1-1\bigg)y+\bigg(\dfrac{3-4}{3}\bigg)z-\bigg(\dfrac{3-5}{3}\bigg)=0}

\sf{\implies\,\bigg(\dfrac{1}{3}\bigg)x+\bigg(\dfrac{-1}{3}\bigg)z-\bigg(\dfrac{-2}{3}\bigg)=0}

\sf{\implies\,x-z+2=0}

Similar questions