Math, asked by varaprasad478, 14 days ago

find the equation of straight line making non-zero equalintersepts on the coordinate axes passing through the point of intersection of line 2x-5y+1=0 and x-3y-4=0.

Answers

Answered by MysticSohamS
3

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ equation \: of \: straight \: line \\  \\ so \: for \: a \: certain \: straight \: line \\ let \: its \\  \: x - intercept \: and \: y - intercept \\ be \: a \: and \: b \: respectively \\  \\ according \: to \: given \: condition \\ a = b ≠0 \\  \\ so \: thus \: then \\ given \: linear \: equations \: are \\  \\ 2x - 5y =  - 1 \:  \:  \:  \:  \:  \:  \: (1) \\  \\ x - 3y  =  - 4 \:  \:  \:  \:  \: \:  \:  \:  \:  (2)

applying \:  \: now \\ (2) \times 2 \\  \\ 2x - 6y = 8 \:  \:  \:  \:  \:  \: (3) \\  \\ now \: using \\ (1) - (3) \\  \\  - 5y - (6y) =  - 1 - 8 \\  \\  - 5y + 6y =  - 9 \\  \\ y =  - 9 \\  \\ substituting \: value \: of \:  \: y \:  \:  \\ in \: equation \:  \: (2) \\  \\ we \: get \:  \:  \\  x  =  - 23

s o\: we \: know \: that \\ double \: intercept \:  \: form \: of \: straight \\ line \: is \: given \:  \: by :  \\  \\  \frac{x}{a}  +  \frac{y}{b}  = 1 \\  \\  \frac{x}{a}  +  \frac{y}{a}  = 1 \\  \\ x + y = a \\  \\  =  - 23 - 9 \\  \\ a =  - 32 \\  \\ a = b =  - 32

so \: then \\  \: again \: by \: using \\ double \: intercept \: form \: equation \\ of \: straight \: line \\ we \: have \\  \\  \frac{x}{a}  +  \frac{y}{b}  = 1 \\  \\  \frac{x}{( - 32)}  +  \frac{y}{( - 32)}  = 1 \\  \\  \frac{ - x - y}{32}  = 1 \\  \\  - (x + y) = 32 \\  \\ x + y =  - 32 \\  \\ or \\  \\ x + y + 32 = 0

so \: equation \: of \: required \: straight \\ line \:  \: is \: here \\  \\ x + y =  - 32

Similar questions