Math, asked by deepanshu58081, 1 month ago

find the equation of straight line with the normal form p=2root2,alfa=5pie/4

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

given =  \\ p = 2 \sqrt{2}  \\    \alpha  =  \frac{5\pi}{4}  \\  \\ so \: as \:  \:  \frac{5\pi}{4}  \: \:  lies \: in \: quadrant \: 3 \\  \\ values \: of \: sin \:  \alpha  \: and \: cos \:  \alpha  \: would \\ be \: negative \:  \\  \\ hence \: then \\ \\  sin \:  \frac{5\pi}{4}  = sin \: (\pi +  \frac{\pi}{4}  \: ) \\  \\  = sin \:  \frac{\pi}{4}  \\  \\  =  -  \:  \frac{1}{ \sqrt{2} }  \\  \\ similarly \\  \\ cos \:  \frac{5\pi}{4}  = cos \:  \frac{\pi}{4}  \\  \\  =   -  \: \frac{1}{ \sqrt{2} }

so \: we \: know \: that \\ normal \: form \: equation \: of \: straight \:  \\ line \: is \: given \: by \\  \\ x.cos \:  \alpha  + y.sin \:  \alpha  = p \\  \\  \frac{ - 1}{ \sqrt{2} } .x + ( \frac{ - 1}{ \sqrt{2} } .y) = 2 \sqrt{2}  \\  \\  \frac{ - x}{ \sqrt{2} }  -  \frac{y}{ \sqrt{2} }  = 2 \sqrt{2}  \\  \\  \frac{ - x - y}{ \sqrt{2} }  = 2 \sqrt{2}  \\  \\  - x - y = 2 \sqrt{2}  \times  \sqrt{2}  \\  \\  - x - y = (2 \times 2) \\  \\  - x - y = 4 \\  \\ x + y + 4 = 0 \\  \\ or \\  \\  \\ x + y =  - 4

Similar questions